Plot metrics from a Topaz training run
Project description
topaztrainmetrics
Plot metrics from a Topaz training run.
Installation
$ pip install topaztrainmetrics
Usage
$ topaztrainmetrics --help
Usage: topaztrainmetrics [OPTIONS] <file>
Plot validation metrics from a Topaz training run.
<file> is the results.txt file from standalone Topaz or the
model_plot.star file from Topaz run within RELION.
Options:
-l, --loss Plot loss.
-g, --gepenalty Plot GE penalty.
-p, --precision Plot precision.
-t, --tpr Plot true/false positive rates.
-c, --auprc Plot area under precision/recall curve (default).
-x, --xaxis [iter|epoch] X axis (iter or epoch; default: iter).
-o, --output TEXT File name to save the plot (optional: with no file
name, simply display plot on screen without saving
it; recommended file formats: .png, .pdf, .svg or
any format supported by matplotlib).
-h, --help Show this message and exit.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topaztrainmetrics-1.2.tar.gz
(3.8 kB
view hashes)
Built Distribution
Close
Hashes for topaztrainmetrics-1.2-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 155de85d2b26802c71d25155e116319a423076664ed4a6e9a7168f5be99d957d |
|
MD5 | d70509f1e2943e74b7d4eb0f181f2d20 |
|
BLAKE2b-256 | db3f1b934462a1d0982f01c115c1d1f2fce5d9d872545bdf5988aceb22cf15ca |