Pretty and opinionated topic model visualization in Python.
Project description
topicwizard: Pretty and opinionated topic model visualization
Features
- Pretty :art:
- Intuitive :cow:
- Clean API :candy:
- Sklearn compatible :nut_and_bolt:
- Easy deployment :earth_africa:
Installation
Install from PyPI:
pip install topic-wizard
Usage (documentation)
Step 1:
Train a scikit-learn compatible topic model.
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
topic_pipeline = Pipeline(
[
("bow", CountVectorizer()),
("nmf", NMF(n_components=10)),
]
)
topic_pipeline.fit(texts)
Step 2:
Visualize with topicwizard.
import topicwizard
topicwizard.visualize(pipeline=topic_pipeline, corpus=texts)
Step 3:
Investigate :eyes: .
a) Topics
b) Words
c) Documents
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topic_wizard-0.1.4.tar.gz
(60.9 kB
view details)
Built Distribution
File details
Details for the file topic_wizard-0.1.4.tar.gz
.
File metadata
- Download URL: topic_wizard-0.1.4.tar.gz
- Upload date:
- Size: 60.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1055-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a2210c80a91724f57f62dc74843a2551fb96a9158da2a7c1b9886cc3725f8d0 |
|
MD5 | 75a96ec813d84a89c5ab7b0cdf8295dd |
|
BLAKE2b-256 | f6a59819c20ed865b60e9b90062d1d90fd2179ba24820056df6b00b2801c0384 |
File details
Details for the file topic_wizard-0.1.4-py3-none-any.whl
.
File metadata
- Download URL: topic_wizard-0.1.4-py3-none-any.whl
- Upload date:
- Size: 73.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1055-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30a6493017fecf7e769342747f7b4101882d8d2c07dd314a4a251a7236a0e6da |
|
MD5 | c42971fc84e5cf04dfb29cb1d16db4e0 |
|
BLAKE2b-256 | 70f3bc65514d59b5ed46ce0e7dcf2aff9a7435ff37b69670a9e5720f26fde8f1 |