Pretty and opinionated topic model visualization in Python.
Project description
topicwizard
Pretty and opinionated topic model visualization in Python.
Features
- Name topics
- Investigate complex relations between topics, words and documents
- Highly interactive
- Pretty :art:
- Intuitive :cow:
- Clean API :candy:
- Sklearn compatible :nut_and_bolt:
- Easy deployment :earth_africa:
Installation
Install from PyPI:
pip install topic-wizard
Usage (documentation)
Step 1:
Train a scikit-learn compatible topic model.
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
topic_pipeline = Pipeline(
[
("bow", CountVectorizer()),
("nmf", NMF(n_components=10)),
]
)
topic_pipeline.fit(texts)
Step 2:
Visualize with topicwizard.
import topicwizard
topicwizard.visualize(pipeline=topic_pipeline, corpus=texts)
Step 3:
Investigate :eyes: .
a) Topics
b) Words
c) Documents
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topic_wizard-0.1.7.tar.gz
(61.2 kB
view details)
Built Distribution
File details
Details for the file topic_wizard-0.1.7.tar.gz
.
File metadata
- Download URL: topic_wizard-0.1.7.tar.gz
- Upload date:
- Size: 61.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1056-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cb7d51a52160af16e8d70c2ec1cf41341debff95d455b48ce8c77159113291a |
|
MD5 | 611d2b68da33c06b29d828dd03de14b2 |
|
BLAKE2b-256 | ffef682681e84151f765e613af6235f96c8a323a91fe005b229eb4562ca64952 |
File details
Details for the file topic_wizard-0.1.7-py3-none-any.whl
.
File metadata
- Download URL: topic_wizard-0.1.7-py3-none-any.whl
- Upload date:
- Size: 74.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1056-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c3b68572fe4cd4f0446ad4c7329e53c55aa9fd8698ef91da9a2c9005d3d17c2f |
|
MD5 | 8893b2eb17f076983cbd1188c1289177 |
|
BLAKE2b-256 | 00bc28ad9537dfb4184bbe0d606b05297a33f4ce9a4fca54a67e1fab264bcdb0 |