Pretty and opinionated topic model visualization in Python.
Project description
topicwizard
Pretty and opinionated topic model visualization in Python.
Features
- Investigate complex relations between topics, words and documents
- Highly interactive
- Name topics
- Pretty :art:
- Intuitive :cow:
- Clean API :candy:
- Sklearn compatible :nut_and_bolt:
- Easy deployment :earth_africa:
Installation
Install from PyPI:
pip install topic-wizard
Usage (documentation)
Step 1:
Train a scikit-learn compatible topic model.
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
topic_pipeline = Pipeline(
[
("bow", CountVectorizer()),
("nmf", NMF(n_components=10)),
]
)
topic_pipeline.fit(texts)
Step 2:
Visualize with topicwizard.
import topicwizard
topicwizard.visualize(pipeline=topic_pipeline, corpus=texts)
Step 3:
Investigate :eyes: .
a) Topics
b) Words
c) Documents
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topic_wizard-0.2.0.tar.gz
(61.3 kB
view details)
Built Distribution
File details
Details for the file topic_wizard-0.2.0.tar.gz
.
File metadata
- Download URL: topic_wizard-0.2.0.tar.gz
- Upload date:
- Size: 61.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1057-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3b2e4e1c94a52c5e63d90accb339f255d3ff3753e79ebf21697d4aaac95216b |
|
MD5 | 0b40e370b8ca74a8f8752034a7cf0a0d |
|
BLAKE2b-256 | 4de2f980445486f0a206fc960ff7c82f52c011c8b81e57381b5222972e7e3f70 |
File details
Details for the file topic_wizard-0.2.0-py3-none-any.whl
.
File metadata
- Download URL: topic_wizard-0.2.0-py3-none-any.whl
- Upload date:
- Size: 73.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1057-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 49d86e1c31ad28b90ac4a2ef0bd32d76f571859f93371a09989c30566c19b4f4 |
|
MD5 | 34349ba5be2ab5046078878716c3b2ff |
|
BLAKE2b-256 | a98f290e1d57cb31f1cfc82bb0f184283961c014596b040d69746610af655988 |