Pretty and opinionated topic model visualization in Python.
Project description
topicwizard
Pretty and opinionated topic model visualization in Python.
Features
- Investigate complex relations between topics, words and documents
- Highly interactive
- Name topics
- Pretty :art:
- Intuitive :cow:
- Clean API :candy:
- Sklearn compatible :nut_and_bolt:
- Easy deployment :earth_africa:
Installation
Install from PyPI:
pip install topic-wizard
Usage (documentation)
Step 1:
Train a scikit-learn compatible topic model.
from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.pipeline import Pipeline
topic_pipeline = Pipeline(
[
("bow", CountVectorizer()),
("nmf", NMF(n_components=10)),
]
)
topic_pipeline.fit(texts)
Step 2:
Visualize with topicwizard.
import topicwizard
topicwizard.visualize(pipeline=topic_pipeline, corpus=texts)
Step 3:
Investigate :eyes: .
a) Topics
b) Words
c) Documents
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topic_wizard-0.2.1.tar.gz
(61.3 kB
view details)
Built Distribution
File details
Details for the file topic_wizard-0.2.1.tar.gz
.
File metadata
- Download URL: topic_wizard-0.2.1.tar.gz
- Upload date:
- Size: 61.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1057-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 25058bb6b2d9bee2f931205d9f82cbb5ad0b18a8c43496654e549da509741d5d |
|
MD5 | 7995b9be8968bb44462884d404079392 |
|
BLAKE2b-256 | fd7ab53725802e664aa3264a9858b2ac4a96ecb2c08077ac282fc74985e0de9f |
File details
Details for the file topic_wizard-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: topic_wizard-0.2.1-py3-none-any.whl
- Upload date:
- Size: 74.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.2 CPython/3.10.8 Linux/5.14.0-1057-oem
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e95c324d9c1148c282c5945a9b8bc1473543829093b9c27db4bd026e4880aea5 |
|
MD5 | 1ebac6d7ea09edb2916395d6634c2e93 |
|
BLAKE2b-256 | f375ba931f6d4550499c0fe85516da04eaad5b6ce6820d6944a8b534774f4b70 |