This package boosts a group-wise nlargest sort
Project description
topn
Cython utility functions to be used instead of pandas' SeriesGroupBy
nlargest()
function (since pandas does it so slowly).
Contains 3 functions:
awesome_topn()
,awesome_hstack_topn()
,awesome_hstack()
: (for CSR matrices only; at least twice as fast asscipy.sparse.hstack
in scipy version 1.6.1)
See Short Description for details.
This is how it may be done with pandas:
import pandas as pd
import numpy as np
r = np.array([0, 1, 2, 1, 2, 3, 2])
c = np.array([1, 1, 0, 3, 1, 2, 3])
d = np.array([0.3, 0.2, 0.1, 1.0, 0.9, 0.4, 0.6])
rcd = pd.DataFrame({'r': r, 'c': c, 'd': d})
rcd
r | c | d | |
---|---|---|---|
0 | 0 | 1 | 0.3 |
1 | 1 | 1 | 0.2 |
2 | 2 | 0 | 0.1 |
3 | 1 | 3 | 1.0 |
4 | 2 | 1 | 0.9 |
5 | 3 | 2 | 0.4 |
6 | 2 | 3 | 0.6 |
ntop = 2
rcd.set_index('c').groupby('r')['d'].nlargest(ntop).reset_index().sort_values(['r', 'd'], ascending = [True, False])
r | c | d | |
---|---|---|---|
0 | 0 | 1 | 0.3 |
1 | 1 | 3 | 1.0 |
2 | 1 | 1 | 0.2 |
3 | 2 | 1 | 0.9 |
4 | 2 | 3 | 0.6 |
5 | 3 | 2 | 0.4 |
Usage
from topn import awesome_topn
o_r, o_c, o_d = awesome_topn(r, c, d, ntop, n_jobs=7)
pd.DataFrame({'r': o_r, 'c': o_c, 'd': o_d})
r | c | d | |
---|---|---|---|
0 | 0 | 1 | 0.3 |
1 | 1 | 3 | 1.0 |
2 | 1 | 1 | 0.2 |
3 | 2 | 1 | 0.9 |
4 | 2 | 3 | 0.6 |
5 | 3 | 2 | 0.4 |
Alternatively, if one had a matrix encoding the above data:
from scipy.sparse import csr_matrix
csr = csr_matrix((d, (r, c)), shape=(4, 4))
then one could use the function awesome_hstack_topn()
instead:
from topn import awesome_hstack_topn
topn_matrix = awesome_hstack_topn([csr], ntop=ntop)
o_r, o_c = topn_matrix.nonzero()
o_d = topn_matrix.data
pd.DataFrame({'r': o_r, 'c': o_c, 'd': o_d})
r | c | d | |
---|---|---|---|
0 | 0 | 1 | 0.3 |
1 | 1 | 3 | 1.0 |
2 | 1 | 1 | 0.2 |
3 | 2 | 1 | 0.9 |
4 | 2 | 3 | 0.6 |
5 | 3 | 2 | 0.4 |
Short Description
Contains 3 functions:
awesome_topn()
,awesome_hstack_topn()
,awesome_hstack()
def awesome_topn(r, c, d, ntop, n_rows=-1, n_jobs=1):
"""
r, c, and d are 1D numpy arrays all of the same length N.
This function will return arrays rn, cn, and dn of length n <= N such
that the set of triples {(rn[i], cn[i], dn[i]) : 0 < i < n} is a subset of
{(r[j], c[j], d[j]) : 0 < j < N} and that for every distinct value
x = rn[i], dn[i] is among the first ntop existing largest d[j]'s whose
r[j] = x.
Input:
r and c: two 1D integer arrays of the same length
d: 1D array of single or double precision floating point type of the
same length as r or c
ntop maximum number of maximum d's returned
n_rows: an int. If > -1 it will replace output rn with Rn the
index pointer array for the compressed sparse row (CSR) matrix
whose elements are {C[rn[i], cn[i]] = dn: 0 < i < n}. This matrix
will have its number of rows = n_rows. Thus the length of Rn is
n_rows + 1
n_jobs: number of threads, must be >= 1
Output:
(rn, cn, dn) where rn, cn, dn are all arrays as described above, or
(Rn, cn, dn) where Rn is described above
"""
def awesome_hstack_topn(blocks, ntop, sort=True, use_threads=False, n_jobs=1):
"""
Returns, in CSR format, the matrix formed by horizontally stacking the
sequence of CSR matrices in parameter 'blocks', with only the largest ntop
elements of each row returned. Also, each row will be sorted in
descending order only when
ntop < total number of columns in blocks or sort=True,
otherwise the rows will be unsorted.
:param blocks: list of CSR matrices to be stacked horizontally.
:param ntop: int. The maximum number of elements to be returned for
each row.
:param sort: bool. Each row of the returned matrix will be sorted in
descending order only when ntop < total number of columns in blocks
or sort=True, otherwise the rows will be unsorted.
:param use_threads: bool. Will use the multi-threaded versions of this
routine if True otherwise the single threaded version will be used.
In multi-core systems setting this to True can lead to acceleration.
:param n_jobs: int. When use_threads=True, denotes the number of threads
that are to be spawned by the multi-threaded routines. Recommended
value is number of cores minus one.
Output:
(scipy.sparse.csr_matrix) matrix in CSR format
"""
def awesome_hstack(blocks, use_threads=False, n_jobs=1):
"""
Returns, in CSR format, the matrix formed by horizontally stacking the
sequence of CSR matrices in parameter blocks.
:param blocks: list of CSR matrices to be stacked horizontally.
:param use_threads: bool. Will use the multi-threaded versions of this
routine if True otherwise the single threaded version will be used.
In multi-core systems setting this to True can lead to acceleration.
:param n_jobs: int. When use_threads=True, denotes the number of threads
that are to be spawned by the multi-threaded routines. Recommended
value is number of cores minus one.
Output:
(scipy.sparse.csr_matrix) matrix in CSR format
"""
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
topn-0.0.7.tar.gz
(14.4 kB
view details)
File details
Details for the file topn-0.0.7.tar.gz
.
File metadata
- Download URL: topn-0.0.7.tar.gz
- Upload date:
- Size: 14.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.2
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cb1a288f106f81aa076a58c52820384928b46c03160f5f1dfb94f5960f30c605 |
|
MD5 | f5f0be2b5e282d3fb24502cabd124ed5 |
|
BLAKE2b-256 | 670682733b9a88ad6120dca0b88045909211654aaeb882804730a6dfe804966c |