Skip to main content

A small example package

Project description

What is TOPSIS Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) originated in the 1980s as a multi-criteria decision making method. TOPSIS chooses the altenrative of shortest Euclidean distance from the idael solution, and fartherst distance from the negative-ideal solution. More details at wikipedia. The TOPSIS algorithm is succintly explained in this paper comparing TOPSIS and VIKOR methods

Using TOPSIS-Python TOPSIS-Python can be run as in the following example:

import numpy as np from topsis import topsis a = [[7, 9, 9, 8], [8, 7, 8, 7], [9, 6, 8, 9], [6, 7, 8, 6]] w = [0.1, 0.4, 0.3, 0.2] I = np.array([1, 1, 1, 0] decision = topsis.topsis(a, w, I) The decision matrix (a) should be constructed with each row representing an alternative, and each column representing a criterion. We have used an example given in TOPSIS Method in MADM (Dr. Farhad Faez)

Weights (w) is not already normalised will be normalised upon initialisation. Information on benefit (1) cost (0) criteria should be provided in I.

By default, the optimisation (TOPSIS calculation) does not take place. No values are stored in decision.C or decision.optimum_choice.

These can be calculated, either by calling decision.calc(), or by calling a representation of the decision (which will itself call decision.calc()):


Alternatives ranking C: [0.74269409 0.40359933 0.17586999 0.44142927]

Best alternative a[0]: [7. 9. 9. 8.]

The rankings are saved in decision.C, with the highest ranking $0.74269409$ offering us the best decision, and lowest ranking $0.17586999$ offering the worst decision making, according to TOPSIS method.

We are also then shown the best alternative index (which happens to be index 0 in this example), and the associated criteria coefficients of this alternative.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for topsis-antuanant, version 0.0.2
Filename, size File type Python version Upload date Hashes
Filename, size topsis_antuanant-0.0.2-py3-none-any.whl (3.0 kB) File type Wheel Python version py3 Upload date Hashes View
Filename, size topsis-antuanant-0.0.2.tar.gz (2.0 kB) File type Source Python version None Upload date Hashes View

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring DigiCert DigiCert EV certificate Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page