A python package to identify the best model out of different models using TOPSIS
Project description
Ranking System Using Topsis
Project 1 : UCS633
Submitted By: Pritpal Singh Pruthi 101883058
pypi: https://pypi.org/project/topsis-ppruthi-101883058/
Installation
Use the package manager pip to install Ranking system.
pip install topsis-ppruthi-101883058
How to use this package:
topsis-ppruthi-101883058 can be run as done below:
In Command Prompt
>> topsis data.csv "1,1,1,1" "+,+,-,+"
In Python IDLE:
>>> import pandas as pd
>>> import topsis
>>> data = pd.read_csv('data.csv').values
>>> data = data[:,1:]
>>> w = [1,1,1,1]
>>> impacts = ["+" , "+" , "-" , "+" ]
>>> topsis.topsis(data,w,impacts)
Sample dataset
The decision matrix should be constructed with each row representing a Model alternative, and each column representing a criterion like Accuracy, R2, Root Mean Squared Error, Correlation, and many more.
Model | Correlation | R2 | RMSE | Accuracy |
---|---|---|---|---|
M1 | 0.79 | 0.62 | 1.25 | 60.89 |
M2 | 0.66 | 0.44 | 2.89 | 63.07 |
M3 | 0.56 | 0.31 | 1.57 | 62.87 |
M4 | 0.82 | 0.67 | 2.68 | 70.19 |
M5 | 0.75 | 0.56 | 1.3 | 80.39 |
Weights list is not already normalised will be normalised later in the code.
Information of benefit positive(+) or negative(-) impact criteria should be provided in impacts
.
Output
Model Score Rank
----- -------- ----
1 0.77221 2
2 0.225599 5
3 0.438897 4
4 0.523878 3
5 0.811389 1
The rankings are displayed in the form of a table using a package 'tabulate', with the 1st rank offering us the best decision, and last rank offering the worst decision making, according to TOPSIS method.
License
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for topsis-ppruthi-101883058-2.0.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | d3103841c978e2e74c961c87a6a66be7bbc2b6c6f59c0f5344d1d790e15321dc |
|
MD5 | 4e4e3656915bb6f5a9914c9783ecb4ca |
|
BLAKE2b-256 | fbf6f4bde45bd8907fb4c3ed89d179956033079c2d55293768688ef5d68dedb2 |
Hashes for topsis_ppruthi_101883058-2.0.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5953d41d2ccbac1d4992ab74f02bd8ab7a7cad80576c3bf9eee720b0583bf695 |
|
MD5 | 05945c611756c1941e6aef321afbe9cd |
|
BLAKE2b-256 | dd3085f01212df247de2f6f051edf222c31276bc1308fa0eab55175355d3e6d5 |