Skip to main content

No project description provided

Project description

torch-attentions

This repository contains PyTorch implementations of various attention mechanisms. The attention mechanisms are implemented as PyTorch modules and can be easily integrated into existing models.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_attentions-0.1.4.tar.gz (1.4 kB view details)

Uploaded Source

Built Distribution

torch_attentions-0.1.4-py3-none-any.whl (2.2 kB view details)

Uploaded Python 3

File details

Details for the file torch_attentions-0.1.4.tar.gz.

File metadata

  • Download URL: torch_attentions-0.1.4.tar.gz
  • Upload date:
  • Size: 1.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.1 CPython/3.10.9 Windows/10

File hashes

Hashes for torch_attentions-0.1.4.tar.gz
Algorithm Hash digest
SHA256 d8abd3a3c125bd91088add38229df67aa255e246e2c749e53f2b4ff60f6568f2
MD5 87724bffe2239bec7e13bda008c9a61f
BLAKE2b-256 06ed489c49c5c41011f6a4c0c323d2583cc68f447ffa9c9e7fcdca3b78c29293

See more details on using hashes here.

File details

Details for the file torch_attentions-0.1.4-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_attentions-0.1.4-py3-none-any.whl
Algorithm Hash digest
SHA256 e48cd1eb36d517e143258c750fc604485bf2ef0198e486006e024a0fe3524f0b
MD5 9d7eb1034219b9be78c0cc856a929bf1
BLAKE2b-256 3f6b1c2034752f8afcfe13559e5106c7b9561beebc914840cdb89b7276039431

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page