API to compose pytorch neural networks
Project description
torch-composer
Compose pytorch neural networks with ease.
Installation (current version: v0.1.0
)
pip install torch-composer
Sample use-cases of the API
import torch_composer
import torch
net = torch_composer.TorchNet(in_dim=2500, out_dim=10)
Sequential(
(input): Linear(in_features=2500, out_features=200, bias=True)
(activation_1): LeakyReLU(negative_slope=0.01)
(hidden_1): Linear(in_features=200, out_features=200, bias=True)
(output_activation): LeakyReLU(negative_slope=0.01)
(output): Linear(in_features=200, out_features=10, bias=True)
)
As simple as you want (see above) or more complex with optional parameters:
torch_composer.TorchNet(
in_dim=2500,
out_dim=10,
hidden={1: [800, 800], 2: [200, 200]},
activation_function=torch.nn.LeakyReLU(negative_slope=0.01),
dropout=0.2,
input_bias=True,
output_bias=True,
)
Sequential(
(input): Linear(in_features=2500, out_features=800, bias=True)
(activation_1): LeakyReLU(negative_slope=0.01)
(hidden_1): Linear(in_features=800, out_features=800, bias=True)
(dropout_1): Dropout(p=0.2, inplace=False)
(activation_2): LeakyReLU(negative_slope=0.01)
(hidden_2): Linear(in_features=200, out_features=200, bias=True)
(dropout_2): Dropout(p=0.2, inplace=False)
(output_activation): LeakyReLU(negative_slope=0.01)
(output): Linear(in_features=200, out_features=10, bias=True)
)
Make an encoder
torch_composer.TorchNetDecoder(data_dim=2500, latent_dim=10)
Make a decoder
torch_composer.TorchNetDecoder(data_dim=2500, latent_dim=10)
Access and set initial parameters for the output layer:
torch_composer.tools.init_output_params(net)
Potential future plans
- Composition of
torch.optim
funcs.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torch_composer-0.0.4rc0.tar.gz
.
File metadata
- Download URL: torch_composer-0.0.4rc0.tar.gz
- Upload date:
- Size: 7.2 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fa49a4af2d795ca136a8b383c293982b1fef7e8d1e5cb08f63da62fa8125744 |
|
MD5 | c7dabd8e79388e7420b4b09ddbd0bfae |
|
BLAKE2b-256 | f1f2d983d4d95db17e0d8b2ba2e1310a6f038c9c02b07e2cb67c375c8e8fdee9 |
File details
Details for the file torch_composer-0.0.4rc0-py3-none-any.whl
.
File metadata
- Download URL: torch_composer-0.0.4rc0-py3-none-any.whl
- Upload date:
- Size: 10.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.10.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b1c0586c2c5d0e8a9f23c21aa4dd9f3e801dcf5b651f8d33e4a84637c1c9bd1 |
|
MD5 | d7750f5bd3a7b5a69f59c52b9bcaf425 |
|
BLAKE2b-256 | d4d04db5f861ceb5674b25a2b300709599ecdcae5da8f34a78aaadd064865abc |