Skip to main content

Differentiable contour to image operations with PyTorch

Project description

torch_contour

Python Mail Downloads Downloads ArXiv Paper

Example of torch contour on a circle when varying the number of nodes

Example of output of contour to mask and contour to distance map on a polygon in the form of a circle when varying the number of nodes

Download

$pip install torch_contour

Overview of the Toolbox

  1. Pytorch layers for differentiable contour (polygon) to image operations.
  • Contour to mask
  • Contour to distance map
  • Draw contour
  • Contour to isolines
  • Smooth contour

if using the layers above please cite the following paper:

@misc{habis2024deepcontourflowadvancingactive,
      title={Deep ContourFlow: Advancing Active Contours with Deep Learning}, 
      author={Antoine Habis and Vannary Meas-Yedid and Elsa Angelini and Jean-Christophe Olivo-Marin},
      year={2024},
      eprint={2407.10696},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2407.10696}, 
}
  1. Pytorch functions for contour feature extraction.
  • Area
  • Perimeter
  • Curvature
  • Hausdorff distance
  1. Function for NumPy arrays only to remove loops inside contours and interpolate along the given contours.

Pytorch Layers

This library contains 3 pytorch non trainable layers for performing the differentiable operations of :

  1. Contour to mask
  2. Contour to distance map.
  3. Draw contour.
  4. Contour to isolines
  5. Smooth contour

It can therefore be used to transform a polygon into a binary mask/distance map/ drawn contour in a completely differentiable way.
In particular, it can be used to transform the detection task into a segmentation task or do detection with any polygon.
The layers in 1, 2, 3 use the nice property of polygons such that for any point inside the sum of oriented angle is $\pm 2\pi$ and quickly converge towards 0 outside.
The three layers have no learnable weight.
All they do is to apply a function in a differentiable way.

Input (Float) (layer 1, 2, 3, 4, 5):

A list of polygons of shape $B \times N \times K \times 2$ with:

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $K$ the number of nodes for each polygon

Output (Float) (layer 1, 2, 3):

A mask/distance map/contour drawn of shape $B \times N \times H \times H$ with :

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $H$ the Heigh of the distance map or mask

Output (Float) (layer 4):

Isolines of shape $B \times N \times I \times H \times H$ with :

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $I$ the number of isolines to extract for each image
  • $H$ the Heigh of the distance map or mask

Output (Float) (layer 5):

Contours of shape $B \times N \times K \times 2$ with :

  • $B$ the batch size
  • $N$ the number of polygons for each image
  • $K$ the number of nodes for each polygon

Important:

The polygon must have values between 0 and 1.

Example:

from torch_contour.torch_contour import Contour_to_distance_map,Contour_to_isolines, Contour_to_mask, Draw_contour, Smoothing, CleanContours
import torch
import matplotlib.pyplot as plt

polygons1 = torch.tensor(
   [
       [
           [
               [0.1640, 0.5085],
               [0.1267, 0.4491],
               [0.1228, 0.3772],
               [0.1461, 0.3027],
               [0.1907, 0.2356],
               [0.2503, 0.1857],
               [0.3190, 0.1630],
               [0.3905, 0.1774],
               [0.4595, 0.2317],
               [0.5227, 0.3037],
               [0.5774, 0.3658],
               [0.6208, 0.3905],
               [0.6505, 0.3513],
               [0.6738, 0.2714],
               [0.7029, 0.2152],
               [0.7461, 0.2298],
               [0.8049, 0.2828],
               [0.8776, 0.3064],
               [0.9473, 0.2744],
               [0.9606, 0.2701],
               [0.9138, 0.3192],
               [0.8415, 0.3947],
               [0.7793, 0.4689],
               [0.7627, 0.5137],
               [0.8124, 0.5142],
               [0.8961, 0.5011],
               [0.9696, 0.5158],
               [1.0000, 0.5795],
               [0.9858, 0.6581],
               [0.9355, 0.7131],
               [0.9104, 0.7682],
               [0.9184, 0.8406],
               [0.8799, 0.8974],
               [0.8058, 0.9121],
               [0.7568, 0.8694],
               [0.7305, 0.7982],
               [0.6964, 0.7466],
               [0.6378, 0.7394],
               [0.5639, 0.7597],
               [0.4864, 0.7858],
               [0.4153, 0.7953],
               [0.3524, 0.7609],
               [0.3484, 0.7028],
               [0.3092, 0.7089],
               [0.2255, 0.7632],
               [0.1265, 0.8300],
               [0.0416, 0.8736],
               [0.0000, 0.8584],
               [0.0310, 0.7486],
               [0.1640, 0.5085],
           ]
       ]
   ],
   dtype=torch.float32,
)

width = 200

Mask = Contour_to_mask(width)
Draw = Draw_contour(width)
Dmap = Contour_to_distance_map(width)
Iso = Contour_to_isolines(width, isolines=[0.1, 0.5, 1])
smoother = Smoothing(sigma=1)

mask = Mask(polygons1).cpu().detach().numpy()[0, 0]
draw = Draw(polygons1).cpu().detach().numpy()[0, 0]
distance_map = Dmap(polygons1).cpu().detach().numpy()[0, 0]
isolines = Iso(polygons1).cpu().detach().numpy()[0, 0]
contour_smooth = smoother(polygons1)

plt.imshow(mask)
plt.show()
plt.imshow(draw)
plt.show()
plt.imshow(distance_map)
plt.show()
plt.imshow(isolines[1])
plt.show()

Pytorch functions

This library also contains batch torch operations for performing:

  1. The area of a batch of polygons
  2. The perimeter of a batch of polygons
  3. The curvature of a batch of polygons
  4. The haussdorf distance between 2 sets of polygons
from torch_contour.torch_contour import area, perimeter, hausdorff_distance, curvature
import torch


polygons2 = torch.tensor([[[[0.0460, 0.3955],
         [0.0000, 0.2690],
         [0.0179, 0.1957],
         [0.0789, 0.1496],
         [0.1622, 0.1049],
         [0.2495, 0.0566],
         [0.3287, 0.0543],
         [0.3925, 0.1280],
         [0.4451, 0.2231],
         [0.4928, 0.2692],
         [0.5436, 0.2215],
         [0.6133, 0.1419],
         [0.7077, 0.1118],
         [0.7603, 0.1569],
         [0.7405, 0.2511],
         [0.6742, 0.3440],
         [0.6042, 0.4099],
         [0.6036, 0.4780],
         [0.6693, 0.5520],
         [0.7396, 0.6100],
         [0.8190, 0.6502],
         [0.9172, 0.6815],
         [0.9818, 0.7310],
         [0.9605, 0.8186],
         [0.8830, 0.9023],
         [0.8048, 0.9205],
         [0.7506, 0.8514],
         [0.6597, 0.7975],
         [0.5866, 0.8195],
         [0.5988, 0.9145],
         [0.6419, 1.0000],
         [0.6529, 0.9978],
         [0.6253, 0.9186],
         [0.5714, 0.8027],
         [0.5035, 0.6905],
         [0.4340, 0.6223],
         [0.3713, 0.6260],
         [0.3116, 0.6854],
         [0.2478, 0.7748],
         [0.1732, 0.8687],
         [0.0892, 0.9420],
         [0.0353, 0.9737],
         [0.0452, 0.9514],
         [0.1028, 0.8855],
         [0.1831, 0.7907],
         [0.2610, 0.6817],
         [0.3113, 0.5730],
         [0.3090, 0.4793],
         [0.2289, 0.4153],
         [0.0460, 0.3955]]]], dtype = torch.float32)  


area_ = area(polygons2)
perimeter_ = perimeter(polygons2)
curvs = curvature(polygons2)
hausdorff_dists = hausdorff_distance(polygons1, polygons2)

NumPy remove loops and interpolate

cleaner = CleanContours()
cleaned_contours = cleaner.clean_contours(polygons2.cpu().detach().numpy())
cleaned_interpolated_contours = cleaner.clean_contours_and_interpolate(polygons2.cpu().detach().numpy())

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_contour-1.3.1.tar.gz (14.3 kB view details)

Uploaded Source

Built Distribution

torch_contour-1.3.1-py3-none-any.whl (11.7 kB view details)

Uploaded Python 3

File details

Details for the file torch_contour-1.3.1.tar.gz.

File metadata

  • Download URL: torch_contour-1.3.1.tar.gz
  • Upload date:
  • Size: 14.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for torch_contour-1.3.1.tar.gz
Algorithm Hash digest
SHA256 bd6a2a5ddb546d34ffbe02e5059f79c8ed61218fff9a84883740004a74a031de
MD5 64e69cfbaa368c18eb57bb7b1b6bc8da
BLAKE2b-256 1bb5b850ebdaa889b8cff45d4df17a1b199e8428e16ff9d4298ad5613bbb3265

See more details on using hashes here.

File details

Details for the file torch_contour-1.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_contour-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 285ceb6d70d2a2d4cc26de807bc1345aca051a9c1fbea426e1e32a3f2db7022d
MD5 3e077e711dd04b4b884c526645bcfba2
BLAKE2b-256 17c3c828b14128ed628d7a81475245d48fd87f99ef0f6d97d84d096affcf5d54

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page