Differentiable contour to image operations with PyTorch
Project description
torch_contour
Download
$pip install torch_contour
Overview of the Toolbox
- Pytorch layers for differentiable contour (polygon) to image operations.
- Contour to mask
- Contour to distance map
- Draw contour
- Contour to isolines
- Smooth contour
if using the layers above please cite the following paper:
@misc{habis2024deepcontourflowadvancingactive,
title={Deep ContourFlow: Advancing Active Contours with Deep Learning},
author={Antoine Habis and Vannary Meas-Yedid and Elsa Angelini and Jean-Christophe Olivo-Marin},
year={2024},
eprint={2407.10696},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.10696},
}
- Pytorch functions for contour feature extraction.
- Area
- Perimeter
- Curvature
- Hausdorff distance
- Function for NumPy arrays only to remove loops inside contours and interpolate along the given contours.
Pytorch Layers
This library contains 3 pytorch non trainable layers for performing the differentiable operations of :
- Contour to mask
- Contour to distance map.
- Draw contour.
- Contour to isolines
- Smooth contour
It can therefore be used to transform a polygon into a binary mask/distance map/ drawn contour in a completely differentiable way.
In particular, it can be used to transform the detection task into a segmentation task or do detection with any polygon.
The layers in 1, 2, 3 use the nice property of polygons such that for any point inside the sum of oriented angle is $\pm 2\pi$ and quickly converge towards 0 outside.
The three layers have no learnable weight.
All they do is to apply a function in a differentiable way.
Input (Float) (layer 1, 2, 3, 4, 5):
A list of polygons of shape $B \times N \times K \times 2$ with:
- $B$ the batch size
- $N$ the number of polygons for each image
- $K$ the number of nodes for each polygon
Output (Float) (layer 1, 2, 3):
A mask/distance map/contour drawn of shape $B \times N \times H \times H$ with :
- $B$ the batch size
- $N$ the number of polygons for each image
- $H$ the Heigh of the distance map or mask
Output (Float) (layer 4):
Isolines of shape $B \times N \times I \times H \times H$ with :
- $B$ the batch size
- $N$ the number of polygons for each image
- $I$ the number of isolines to extract for each image
- $H$ the Heigh of the distance map or mask
Output (Float) (layer 5):
Contours of shape $B \times N \times K \times 2$ with :
- $B$ the batch size
- $N$ the number of polygons for each image
- $K$ the number of nodes for each polygon
Important:
The polygon must have values between 0 and 1.
Example:
from torch_contour.torch_contour import Contour_to_distance_map,Contour_to_isolines, Contour_to_mask, Draw_contour, Smoothing, CleanContours
import torch
import matplotlib.pyplot as plt
polygons1 = torch.tensor(
[
[
[
[0.1640, 0.5085],
[0.1267, 0.4491],
[0.1228, 0.3772],
[0.1461, 0.3027],
[0.1907, 0.2356],
[0.2503, 0.1857],
[0.3190, 0.1630],
[0.3905, 0.1774],
[0.4595, 0.2317],
[0.5227, 0.3037],
[0.5774, 0.3658],
[0.6208, 0.3905],
[0.6505, 0.3513],
[0.6738, 0.2714],
[0.7029, 0.2152],
[0.7461, 0.2298],
[0.8049, 0.2828],
[0.8776, 0.3064],
[0.9473, 0.2744],
[0.9606, 0.2701],
[0.9138, 0.3192],
[0.8415, 0.3947],
[0.7793, 0.4689],
[0.7627, 0.5137],
[0.8124, 0.5142],
[0.8961, 0.5011],
[0.9696, 0.5158],
[1.0000, 0.5795],
[0.9858, 0.6581],
[0.9355, 0.7131],
[0.9104, 0.7682],
[0.9184, 0.8406],
[0.8799, 0.8974],
[0.8058, 0.9121],
[0.7568, 0.8694],
[0.7305, 0.7982],
[0.6964, 0.7466],
[0.6378, 0.7394],
[0.5639, 0.7597],
[0.4864, 0.7858],
[0.4153, 0.7953],
[0.3524, 0.7609],
[0.3484, 0.7028],
[0.3092, 0.7089],
[0.2255, 0.7632],
[0.1265, 0.8300],
[0.0416, 0.8736],
[0.0000, 0.8584],
[0.0310, 0.7486],
[0.1640, 0.5085],
]
]
],
dtype=torch.float32,
)
width = 200
Mask = Contour_to_mask(width)
Draw = Draw_contour(width)
Dmap = Contour_to_distance_map(width)
Iso = Contour_to_isolines(width, isolines=[0.1, 0.5, 1])
smoother = Smoothing(sigma=1)
mask = Mask(polygons1).cpu().detach().numpy()[0, 0]
draw = Draw(polygons1).cpu().detach().numpy()[0, 0]
distance_map = Dmap(polygons1).cpu().detach().numpy()[0, 0]
isolines = Iso(polygons1).cpu().detach().numpy()[0, 0]
contour_smooth = smoother(polygons1)
plt.imshow(mask)
plt.show()
plt.imshow(draw)
plt.show()
plt.imshow(distance_map)
plt.show()
plt.imshow(isolines[1])
plt.show()
Pytorch functions
This library also contains batch torch operations for performing:
- The area of a batch of polygons
- The perimeter of a batch of polygons
- The curvature of a batch of polygons
- The haussdorf distance between 2 sets of polygons
from torch_contour.torch_contour import area, perimeter, hausdorff_distance, curvature
import torch
polygons2 = torch.tensor([[[[0.0460, 0.3955],
[0.0000, 0.2690],
[0.0179, 0.1957],
[0.0789, 0.1496],
[0.1622, 0.1049],
[0.2495, 0.0566],
[0.3287, 0.0543],
[0.3925, 0.1280],
[0.4451, 0.2231],
[0.4928, 0.2692],
[0.5436, 0.2215],
[0.6133, 0.1419],
[0.7077, 0.1118],
[0.7603, 0.1569],
[0.7405, 0.2511],
[0.6742, 0.3440],
[0.6042, 0.4099],
[0.6036, 0.4780],
[0.6693, 0.5520],
[0.7396, 0.6100],
[0.8190, 0.6502],
[0.9172, 0.6815],
[0.9818, 0.7310],
[0.9605, 0.8186],
[0.8830, 0.9023],
[0.8048, 0.9205],
[0.7506, 0.8514],
[0.6597, 0.7975],
[0.5866, 0.8195],
[0.5988, 0.9145],
[0.6419, 1.0000],
[0.6529, 0.9978],
[0.6253, 0.9186],
[0.5714, 0.8027],
[0.5035, 0.6905],
[0.4340, 0.6223],
[0.3713, 0.6260],
[0.3116, 0.6854],
[0.2478, 0.7748],
[0.1732, 0.8687],
[0.0892, 0.9420],
[0.0353, 0.9737],
[0.0452, 0.9514],
[0.1028, 0.8855],
[0.1831, 0.7907],
[0.2610, 0.6817],
[0.3113, 0.5730],
[0.3090, 0.4793],
[0.2289, 0.4153],
[0.0460, 0.3955]]]], dtype = torch.float32)
area_ = area(polygons2)
perimeter_ = perimeter(polygons2)
curvs = curvature(polygons2)
hausdorff_dists = hausdorff_distance(polygons1, polygons2)
NumPy remove loops and interpolate
cleaner = CleanContours()
cleaned_contours = cleaner.clean_contours(polygons2.cpu().detach().numpy())
cleaned_interpolated_contours = cleaner.clean_contours_and_interpolate(polygons2.cpu().detach().numpy())
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torch_contour-1.3.1.tar.gz
.
File metadata
- Download URL: torch_contour-1.3.1.tar.gz
- Upload date:
- Size: 14.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | bd6a2a5ddb546d34ffbe02e5059f79c8ed61218fff9a84883740004a74a031de |
|
MD5 | 64e69cfbaa368c18eb57bb7b1b6bc8da |
|
BLAKE2b-256 | 1bb5b850ebdaa889b8cff45d4df17a1b199e8428e16ff9d4298ad5613bbb3265 |
File details
Details for the file torch_contour-1.3.1-py3-none-any.whl
.
File metadata
- Download URL: torch_contour-1.3.1-py3-none-any.whl
- Upload date:
- Size: 11.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 285ceb6d70d2a2d4cc26de807bc1345aca051a9c1fbea426e1e32a3f2db7022d |
|
MD5 | 3e077e711dd04b4b884c526645bcfba2 |
|
BLAKE2b-256 | 17c3c828b14128ed628d7a81475245d48fd87f99ef0f6d97d84d096affcf5d54 |