Skip to main content

The Delaunay triangulation for PyTorch

Project description

Torch Delaunay - The Delaunay triangulation library for PyTorch

This is a fast library for computing Delaunay triangulation of 2-dimensional points.

The implementation is based on a sweep-algorithm, introduced by David Sinclair[^1] and later improved by Volodymyr Agafonkin[^2].

Installation

The library is distributed as PyPI package, to install the package, execute the following command:

pip install torch_delaunay

You can use the torch_delaunay library for a fast computation of Delaunay triangulation for points defined as PyTorch tensors.

Usage

import torch
from torch_delaunay.functional import shull2d

# Compute Delaunay triangulation for randomly-generated 2-dimensional points.
points = torch.rand((100, 2))
simplices = shull2d(simplices)

License

The Torch Delaunay is distributed under GPLv3 license. See the LICENSE file for full license text.

[^1]: David Sinclair - S-hull: a fast radial sweep-hull routine for Delaunay triangulation. [^2]: Volodymyr Agafonkin - Delaunator: An incredibly fast and robust JavaScript library for Delaunay triangulation of 2D points.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc1-cp312-cp312-macosx_11_0_arm64.whl (101.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc1-cp311-cp311-macosx_11_0_arm64.whl (103.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl (101.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl (101.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d661e1c6cb9b1d3b4da8933bae8de73b96424dbcf75002550a2557187e8794ca
MD5 07ed65496ddd158783f11725f72dec3e
BLAKE2b-256 45875caad95b31db13bb98fad782180e7a22109b1aa594a4d7afd9525227f8bb

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 13a80261fc923d102555a40a65344787e902b16caa40b7c20a5a212cd366cfb0
MD5 96e751f668b517bed0bbecb160ae7f4f
BLAKE2b-256 7552fb700cdcf2879c65865bea9d1c5d2cdeeefc98331f98b0d418403bbb56af

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8e545728b40c256ef615994c14064a07cdf3428642b8e8a7d0be50b95f50a3a5
MD5 256df5f3afd92f8ac6141c3887d130e3
BLAKE2b-256 6a06c65f1e743ebfeae6856f6698be17ae4f2d887d7d32486bcac3613a37380e

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f08c8ac509b3bd29fda3332e3e806f59fea8274bee32dc9f6b1317efe31473d7
MD5 dcb396b834ae72c4bdf53d57ba8ede38
BLAKE2b-256 38fa8217a46265d6924da29452c0299d4587f777f4432ed35eca33707ffcd416

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c83d0670ab6e35cee30bc15326114d26d5361964ab344b60cc12efb6b339570c
MD5 42d27f2e3247376d8c3c51729f1efb10
BLAKE2b-256 ea502b1a998d1d728fc80b6a1c625acba891979f721f62e6d5f67706764330f7

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f0a340317497c832109752e2214955fecb4ff8290afef95fce7ade24da52415
MD5 56c3e5fd29464acaa566c75fa5c468af
BLAKE2b-256 db586ee254ba44ee2397b9fa297e14411873954a7a4cac38bee3bf2595f7001a

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 040872da91eb135ce31d3ff2427dccd8ce1a2e63961e17a641bc69cc1eb75a2d
MD5 fbf974ceadfe851965e981dcb62e8540
BLAKE2b-256 ab5c3775823db4c5610c7835bd6735a776bc1a82e5c7c9f67d7709873b7e917d

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 831de9cc92cd60b77749bb315bff8ba534a79d4cfc122c0a093c2ed48a2652a0
MD5 8690ce1b508fe27d94de0cc9bf3b0299
BLAKE2b-256 d47c937665815f7395c17995b0fa7b13ec4357f7c7b86af740e8d6e8dc9ab75a

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69276fb72bbd4c2934c74a8ba26c74749f5f4fb4200d0ed8dab469a7e90868f9
MD5 305f61c0fe3a652b9f07e5f701a37d5b
BLAKE2b-256 b9a65f840e907e8d088b7d8882b41f7a0a482a6d5d1187fb17856d23d6b46f96

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c7b31f480f73cb61fe7207989ec8757a66c4bbee6d48c102adf26e50e86d596
MD5 a760ee23c741aa4024ff5e90a53e567a
BLAKE2b-256 28429dba10ab3cd4b4a9c72b893654339b242a91ea331080c7d1a67d8e072b2f

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3551b2780b42d5349fdda760329c90f792fa4c0b17fd4374db6228c7c78e818d
MD5 753c004bb507dfaf6650ec6a3fddb6e5
BLAKE2b-256 a1764df01ff3bdb86f7f50826b6c29a781c328982479a3df013adc766dbaf3f6

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 55017e4724a13d21265f14653e4213f5b6dfbec40280cbd326025787386d1016
MD5 7b2c4ee0e4e4f8a0c04639bdbd4d7c21
BLAKE2b-256 00fb50317c635f0a5dc3b3f91373ff7176fefebb6d3886dc8d7be4675b632396

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page