Skip to main content

The Delaunay triangulation for PyTorch

Project description

Torch Delaunay - The Delaunay triangulation library for PyTorch

This is a fast library for computing Delaunay triangulation of 2-dimensional points.

The implementation is based on a sweep-algorithm, introduced by David Sinclair[^1] and later improved by Volodymyr Agafonkin[^2].

Here is an example of triangulation output produced by Torch Delaunay library for a random set of points: example

Installation

The library is distributed as PyPI package, to install the package, execute the following command:

pip install torch_delaunay

You can use the torch_delaunay library for a fast computation of Delaunay triangulation for points defined as PyTorch tensors.

Usage

import torch
from torch_delaunay.functional import shull2d

# Compute Delaunay triangulation for randomly-generated 2-dimensional points.
points = torch.rand((100, 2))
simplices = shull2d(simplices)

License

The Torch Delaunay is distributed under GPLv3 license. See the LICENSE file for full license text.

[^1]: David Sinclair - S-hull: a fast radial sweep-hull routine for Delaunay triangulation.

[^2]: Volodymyr Agafonkin - Delaunator: An incredibly fast and robust JavaScript library for Delaunay triangulation of 2D points.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc3-cp312-cp312-macosx_11_0_arm64.whl (160.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc3-cp311-cp311-macosx_11_0_arm64.whl (162.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc3-cp310-cp310-macosx_11_0_arm64.whl (160.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

torch_delaunay-1.0.0rc3-cp39-cp39-macosx_11_0_arm64.whl (160.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5ede856303a79809d4ad5f323abb008ce6c433d99317107666b6b6efed8ee41
MD5 2760300e05ac761af6cb0101204fda43
BLAKE2b-256 765a4d0a94461e519188255be1788a4744f6961f408d0ba9b698a434ecf0eb04

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2f64d32973a21b619414b8aff9c29cc2c7e05359860cbe19a70a50427fc5922
MD5 3433b9b6e831d25c2f227f3c700efe70
BLAKE2b-256 99f11eb55ea1449438388d30594db095756c5982b1ee1fb3237643246fc4052d

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f14abcb1e69b0f075b39a6a0762579d9c8572966f1ad0dc670be9f2780aa33a
MD5 5fc023d8cb58459e1b5d17a936c855c6
BLAKE2b-256 6d525f7f1a316f073190044d1a727c1f6557733dbabf9bc8a050ac7ccf7cae36

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43007009dc19883a33dc1bbb8e0f28c33cc919f25b76ff547c0c8d806a5805c5
MD5 6f5da0ae6fc41d9b21d4d8c4ac39bd4d
BLAKE2b-256 2f1cf7abd0b373e6a365c02bea66089b49636199e87c3c4eb462662e58536941

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d1b7da9fd9ba208aea312b48e437f6cfc5d47450827a398b568277fb6c577d74
MD5 7fb953056cc4d801f1d42f984ee5c5e5
BLAKE2b-256 ce8b41c44716d39893de3923b1a7efd982dcba4be1c20c32975279065c92cf53

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dc00c33da643d03c366d233fb11e12758ffdd791ae4e200be752d1403aeccbea
MD5 0447de371742b8e21145094e1ef5fb4e
BLAKE2b-256 b5996a8ccbcdfb1d504415f8da4a09ace02fe1b5bd95c263a7e11db9ca4e4062

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 01677cc0285628d4967937e18f682f5cd10b43642e3a4c510adda58b81b3d854
MD5 f17b02c0f67086bb486b591db9efeb85
BLAKE2b-256 25f3d0e070f825eb69544df0f4163e3078d80bb44d6e3093ae0d7b1cc5fd28d9

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88b2052ca1f3592acec1f30d98e20674ec21642479fe6137dd9e96a61dd012a3
MD5 57559d573dfb1aaa4fc8ce1816c02485
BLAKE2b-256 88ad22c90d61868f437328b8b9fff037b407bd1e2284cf627ebf9fc771b5f087

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 106ad6c2102f2911318a48953254359744860b77697c58f58246e077d761702b
MD5 a34601949ee46e06e324cac66369188e
BLAKE2b-256 d28c1e4a8dbea20ce36a949b51c0b1b089d1b5a279ebf9c4d265fdeb9cd9cd8f

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c8c3f8cb439ed263c5330a7b43f1e2d8e23d3d87980072360a11c0e1fb0ff06d
MD5 d28b6507dbc7cb17c9d2692e75111caf
BLAKE2b-256 f2e844fb4c2b15483c612bd455978e590fb9edd6681f4f1d1b91a503729e6e54

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 56f00ac2833657576efbf5a8ff1d7135ab13a9a2808f8df91a57d3c0660c46af
MD5 b1d25eeb9c157b876ad0e5bf9b9a141a
BLAKE2b-256 25899b646bf1b92bd6ff6f83fb2703ce1305c2845651e7431a71371322a0c1db

See more details on using hashes here.

File details

Details for the file torch_delaunay-1.0.0rc3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torch_delaunay-1.0.0rc3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5897e135f4e2921361615764c7a3887d58b0e1be4564b3927526f1b8ef193d6
MD5 3b3005a10f489d6f57b04f97e74840d9
BLAKE2b-256 0e92277dbeefd808a0441d300f33767abaa7c31ce97ec3bfae4a8889b6190c1f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page