Skip to main content

PyTorch edit-distance functions

Project description

PyTorch edit-distance functions

Useful functions for E2E Speech Recognition training with PyTorch and CUDA.

Here is a simple use case with Reinforcement Learning and RNN-T loss:

blank = torch.tensor([0], dtype=torch.int).cuda()
space = torch.tensor([1], dtype=torch.int).cuda()

xs = model.greedy_decode(xs, sampled=True)

torch_edit_distance.remove_blank(xs, xn, blank)

rewards = 1 - torch_edit_distance.compute_wer(xs, ys, xn, yn, blank, space)

nll = rnnt_loss(zs, ys, xn, yn)

loss = nll * rewards

levenshtein_distance

Levenshtein edit-distance with detailed statistics for ins/del/sub operations.

collapse_repeated

Merge repeated tokens, useful for CTC-based model.

remove_blank

Remove unnecessary blank tokens, useful for CTC, RNN-T, RNA models.

strip_separator

Remove leading, trailing and repeated middle separators.

Requirements

  • C++11 compiler (tested with GCC 9.4.0).
  • Python: 3.5, 3.6, 3.7, 3.8, 3.9 (tested with version 3.8).
  • PyTorch >= 1.5.0 (tested with version 1.13.1+cu116).
  • CUDA Toolkit (tested with version 11.2).

Install

There is no compiled version of the package. The following setup instructions compile the package from the source code locally.

From Pypi

pip install torch_edit_distance

From GitHub

git clone https://github.com/1ytic/pytorch-edit-distance
cd pytorch-edit-distance
python setup.py install

Test

python -m torch_edit_distance.test

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_edit_distance-0.4.0.tar.gz (8.5 kB view details)

Uploaded Source

File details

Details for the file torch_edit_distance-0.4.0.tar.gz.

File metadata

  • Download URL: torch_edit_distance-0.4.0.tar.gz
  • Upload date:
  • Size: 8.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.6

File hashes

Hashes for torch_edit_distance-0.4.0.tar.gz
Algorithm Hash digest
SHA256 ce402efa87680f9215858d5d36e70115b2212cc09feb248a8d6e29508b98fe9c
MD5 fc5efb59666f5374f878193f198c1863
BLAKE2b-256 42e162aaebb2c9bd17e3e7bc2a002d6fc31a87823b031c501f6acb4dd8f677ba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page