Skip to main content

Efficient distortion loss with O(n) realization.

Project description

torch_efficient_distloss

Distortion loss is proposed by mip-nerf-360, which encourages volume rendering weights to be compact and sparse and can alleviate floater and background collapse artifact. In our DVGOv2 report (coming soon), we show that the distortion loss is also helpful to point-based query, which speeds up our training and gives us better quantitative results.

A pytorch pseudo-code for the distortion loss:

def original_distloss(w, m, interval):
    '''
    Original O(N^2) realization of distortion loss.
    There are B rays each with N sampled points.
    w:        Float tensor in shape [B,N]. Volume rendering weights of each point.
    m:        Float tensor in shape [B,N]. Midpoint distance to camera of each point.
    interval: Scalar or float tensor in shape [B,N]. The query interval of each point.
    '''
    loss_uni = (1/3) * (interval * w.pow(2)).sum(-1).mean()
    ww = w.unsqueeze(-1) * w.unsqueeze(-2)          # [B,N,N]
    mm = (m.unsqueeze(-1) - m.unsqueeze(-2)).abs()  # [B,N,N]
    loss_bi = (ww * mm).sum((-1,-2)).mean()
    return loss_uni + loss_bi

Unfortunately, the straightforward implementation results in O(N^2) space time complexity for N sampled points on a ray. In this package, we provide our O(N) realization presnted in the DVGOv2 report.

Please cite mip-nerf-360 if you find this repo helpful. We will be happy if you also cite DVGOv2.

@inproceedings{BarronMVSH22,
  author    = {Jonathan T. Barron and
               Ben Mildenhall and
               Dor Verbin and
               Pratul P. Srinivasan and
               Peter Hedman},
  title     = {Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields},
  booktitle = {CVPR},
  year      = {2022},
}

@article{SunSC22_2,
  author    = {Cheng Sun and
               Min Sun and
               Hwann{-}Tzong Chen},
  title     = {Improved Direct Voxel Grid Optimization for Radiance Fields Reconstruction},
  journal   = {to be announced},
  year      = {2022},
}

Installation

pip install torch_efficient_distloss

Assumed Pytorch and numpy are already installed.

Documentation

All functions are runs in O(N) and are numerical equivalent to the distortion loss.

import torch
from torch_efficient_distloss import eff_distloss, eff_distloss_native, flatten_eff_distloss

# A toy example
B = 8192  # number of rays
N = 128   # number of points on a ray
w = torch.rand(B, N).cuda()
w = w / w.sum(-1, keepdim=True)
w = w.clone().requires_grad_()
s = torch.linspace(0, 1, N+1).cuda()
m = (s[1:] + s[:-1]) * 0.5
m = m[None].repeat(B,1)
interval = 1/N

loss = eff_distloss(w, m, interval)
loss.backward()
print('Loss', loss)
print('Gradient', w.grad)
  • eff_distloss_native:
    • Using built-in Pytorch operation to implement the O(N) distortion loss.
    • Input:
      • w: Float tensor in shape [B,N]. Volume rendering weights of each point.
      • m: Float tensor in shape [B,N]. Midpoint distance to camera of each point.
      • interval: Scalar or float tensor in shape [B,N]. The query interval of each point.
  • eff_distloss:
    • The same as eff_distloss_native. Slightly faster and consume slightly more GPU memory.
  • flatten_eff_distloss:
    • Support varied number of sampled points on each ray.
    • All input tensor should be flatten.
    • Should provide an additional flatten Long tensor ray_id to specify the ray index of each point. ray_id should be increasing (i.e., ray_id[i-1]<=ray_id[i]) and ranging from 0 to N-1.

Testing

Numerical equivalent

Run python test.py. All our implementation is numerical equivalent to the O(N^2) original_distloss.

Speed and memeory benchmark

Run python test_time_mem.py. We use a batch of B=8192 rays. Below is the results on my RTX 2080Ti GPU.

  • Peak GPU memory (MB)
    # of pts N 32 64 128 256 384 512
    original_distloss 102 396 1560 6192 OOM OOM
    eff_distloss_native 12 24 48 96 144 192
    eff_distloss 14 28 56 112 168 224
    flatten_eff_distloss 13 26 52 104 156 208
  • Run time accumulated over 100 runs (sec)
    # of pts N 32 64 128 256 384 512
    original_distloss 0.2 0.8 2.4 17.9 OOM OOM
    eff_distloss_native 0.1 0.1 0.1 0.2 0.3 0.3
    eff_distloss 0.1 0.1 0.1 0.1 0.2 0.2
    flatten_eff_distloss 0.1 0.1 0.1 0.2 0.2 0.3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_efficient_distloss-0.1.2.tar.gz (6.3 kB view details)

Uploaded Source

File details

Details for the file torch_efficient_distloss-0.1.2.tar.gz.

File metadata

File hashes

Hashes for torch_efficient_distloss-0.1.2.tar.gz
Algorithm Hash digest
SHA256 2654495c06266db5dd447fa4a0342dd56d4480fc7ac936a6172c0c5c69933dc0
MD5 ef585c3f1e1f74dc99160e27c646c263
BLAKE2b-256 5b7f5cfc9678253c50bfd5a8a043b0549d07b624c93d5a132cce6691b5df4e30

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page