Convert W2V embeddings of a sequence (2D) to one vector (1D)
Project description
torch-emb2vec
Convert W2V embeddings of a sequence (2D) to one vector (1D)
Usage
Create toy data
num_emb, emb_dim = 1000, 256
emb = torch.nn.Embedding(num_emb, emb_dim)
batch_sz, seq_len = 5, 128
inputs = torch.randint(num_emb, (batch_sz, seq_len))
z = emb(inputs)
Averaging the embedding vectors over the sequence is the most common technique to convert the 2D representation to a 1D representation.
avg = AverageToVec()
vec = avg(z)
vec.shape
# torch.Size([5, 128])
Concatenating the W2V values, i.e., flattening, might seem like an attractive option but will result in huge vectors that is usually not practiable for downstream tasks.
con = ConcatToVec()
vec = con(z)
vec.shape
# torch.Size([5, 32768])
Another way are random projections. ConvToVec applies a 1D-Convolution over the sequence wheras the embedding elements are treated as Conv1D input channels.
conv1 = ConvToVec(seq_len=z.shape[1], emb_dim=z.shape[2], num_output=768)
vec = conv1(z)
vec.shape
# torch.Size([5, 768])
It is also possible to apply the heaviside function to generate binary 1D vector embeddings.
conv1 = ConvToVec(seq_len=z.shape[1], emb_dim=z.shape[2], num_output=2048, hashed=True)
vec = conv1(z)
vec.shape, vec.min(), vec.max()
# torch.Size([5, 2048]), 0.0, 1.0
Appendix
Installation
The torch-emb2vec git repo is available as PyPi package
pip install torch-emb2vec
pip install git+ssh://git@github.com/ulf1/torch-emb2vec.git
Install a virtual environment
python3.6 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)
Python commands
Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')
Run Unit Tests: PYTHONPATH=. pytest
Publish
pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*
Clean up
find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv
Support
Please open an issue for support.
Contributing
Please contribute using Github Flow. Create a branch, add commits, and open a pull request.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file torch-emb2vec-0.1.2.tar.gz
.
File metadata
- Download URL: torch-emb2vec-0.1.2.tar.gz
- Upload date:
- Size: 8.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/61.3.0 requests-toolbelt/0.9.1 tqdm/4.63.1 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b447733e11123cbd55461f28ef03fa18968911ccbe0151dd68ae76e09e45d73a |
|
MD5 | a359c6d96febc45e2b858cc1dc6f6725 |
|
BLAKE2b-256 | 630d820f82d9bf56f9af9cb5e7f03d835f15da3a9a5e82b2a504b82b36bdf4a4 |