Skip to main content

Embedding similarity implemented in PyTorch

Project description

PyTorch Embedding Similarity

Travis Coverage

Install

pip install torch-embed-sim

Usage

from torch_embed_sim import EmbeddingSim


class Net(nn.Module):

    def __init__(self):
        super(Net, self).__init__()
        self.embed = torch.nn.Embedding(num_embeddings=10, embedding_dim=20)
        self.embed_sim = EmbeddingSim(num_embeddings=10)

    def forward(self, x):
        return self.embed_sim(self.embed(x), self.embed.weight)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-embed-sim-0.3.2.tar.gz (2.3 kB view details)

Uploaded Source

File details

Details for the file torch-embed-sim-0.3.2.tar.gz.

File metadata

  • Download URL: torch-embed-sim-0.3.2.tar.gz
  • Upload date:
  • Size: 2.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.1 setuptools/40.7.1 requests-toolbelt/0.8.0 tqdm/4.24.0 CPython/3.6.4

File hashes

Hashes for torch-embed-sim-0.3.2.tar.gz
Algorithm Hash digest
SHA256 bc2f93fafc8ebd50e5e325ee80578396865384b9897aa9eb6777b496c9e492c6
MD5 afbe4a7ed88418f96d0686055c85bf0d
BLAKE2b-256 9513c59c9a3318dfcebc12c20e04286709da09b0bb49620ac5a380bbf8e21aae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page