Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.0b20200421.tar.gz (75.3 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.0b20200421-py2.py3-none-any.whl (117.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.0b20200421.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.0b20200421.tar.gz
  • Upload date:
  • Size: 75.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for torch-encoding-1.2.0b20200421.tar.gz
Algorithm Hash digest
SHA256 e5cbd496d8bd423799244f02521560bc5764c03bb963158bb0e3baaf401cb99a
MD5 a4d2aa5ea14258f777360b68a611c898
BLAKE2b-256 fc46b01832ef5964cdbc78d6d64329d7d861a9f564106de80aaf2cae172142dc

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.0b20200421-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.0b20200421-py2.py3-none-any.whl
  • Upload date:
  • Size: 117.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

File hashes

Hashes for torch_encoding-1.2.0b20200421-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5a72164da53387c5e24373a5d2a753da8e135effe36a86350f52c921707ba534
MD5 2f389e2640cf75dd3d75f7d9be14d50c
BLAKE2b-256 be211fffcc4f8ed489eda181ed4dd364b4d5baf23b73a3a515154ea6b1c5b151

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page