Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.0b20200504.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.0b20200504-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.0b20200504.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.0b20200504.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for torch-encoding-1.2.0b20200504.tar.gz
Algorithm Hash digest
SHA256 e407394d3fbc7833ef341f09ffa6be9725b09a53776b38c52cad4123d7c06ed1
MD5 fc63afa046b11293a71863de06105330
BLAKE2b-256 5265a6268acf5c58941fcfe54f1f8f1cb2e15a8df5470e02ad4ffa3b5bc9f1a2

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.0b20200504-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.0b20200504-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.6

File hashes

Hashes for torch_encoding-1.2.0b20200504-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5925d5591220fb03f11760363c823b1a3f619dd4916d50e1576a06e1d846e979
MD5 38a6b92950317b291f727b2b71070a56
BLAKE2b-256 01ab23f068e303ad59e165d8924d0717411dad8af94c6a39debb71120e941d57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page