Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.1b20200520.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.1b20200520-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.1b20200520.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.1b20200520.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch-encoding-1.2.1b20200520.tar.gz
Algorithm Hash digest
SHA256 802c40b349c5adb155141bbd2f3da9de19130e6ec0cd46ab2e75e4b725f65fc8
MD5 80c20cb4bac560a92a502ba72d4bf9f5
BLAKE2b-256 f9f1073b6d15931dae98de8f488a2e2928316ff822f97040399eaaa9c98aab10

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.1b20200520-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.1b20200520-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch_encoding-1.2.1b20200520-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 b98ab15f64fc7421d9caf96eb2e5a8a23bd7ff7dbc3d667a1f10c91253bae509
MD5 b4ac90521e4fe8ab812a3113dd19ffed
BLAKE2b-256 dbf14afcb26507933c8db07bbaea7c060624149fad31982916c6e0239f364e7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page