Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.1b20200527.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.1b20200527-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.1b20200527.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.1b20200527.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch-encoding-1.2.1b20200527.tar.gz
Algorithm Hash digest
SHA256 7fa19f1be96af5bc537fa5989852b3c4f1d4236ffdfabd2a6280dcd58afb40a9
MD5 88cdc4cca0a1aa6c76e59e4b164f1433
BLAKE2b-256 979d6f9bbba5382e16e5d6c8ad0c4d95081037acefd593dc3a9861467a51db1c

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.1b20200527-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.1b20200527-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch_encoding-1.2.1b20200527-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c5f21beda576e647ef4fde499edb52e5123ff49c893ebebeab07b6b741aae2bf
MD5 be3c1c3ed02f0020821118e43337f585
BLAKE2b-256 f804b57c9b3409f92f3ada5550da58bd90e244ea1fa01f67ecef9656eaef43e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page