Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.1b20200531.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.1b20200531-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.1b20200531.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.1b20200531.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch-encoding-1.2.1b20200531.tar.gz
Algorithm Hash digest
SHA256 a3bd0a3cfc553dcf9861b8278f8c84dc3100500e250941ae9062e7768a7b60e0
MD5 9e56dd383f57788d70725cbdd6b1f1d2
BLAKE2b-256 96634ae913283292db327c9b84b98352b775826d00340f688901a82b30540e60

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.1b20200531-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.1b20200531-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.7.7

File hashes

Hashes for torch_encoding-1.2.1b20200531-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d8a692d6f09f6c7bad0d9f55867ab6892f49750b3a014a70353a5ff743afafa4
MD5 bda88b5ec33a6d349fa7ea51500297c4
BLAKE2b-256 caedd071b7c21829228a40b5e6ff3a0dcb18332fa7efd3fd9f6f334750d16f77

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page