Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.2b20200702.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.2b20200702-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.2b20200702.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.2b20200702.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for torch-encoding-1.2.2b20200702.tar.gz
Algorithm Hash digest
SHA256 161cdfd4419e0aa54138ea7fa64d8dae5a267a9f1d78496ffa8dffc7eaa8b7f3
MD5 b53acedaf13c8bd55fdd36dfe64cd39d
BLAKE2b-256 0174ca0cb77b567229700f9e3e8bcb2befe19b9ad24df2fd479b2680437290f4

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.2b20200702-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.2b20200702-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/41.2.0 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.7

File hashes

Hashes for torch_encoding-1.2.2b20200702-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 5041e4e57bc3609c6def14274f57a0a285371a616140efb5747306c407b477aa
MD5 43864ef63eb7851fc5f7cd31b59cae60
BLAKE2b-256 275cdb432d05a7967efc971518610cdf98eb3478c10354a23be06f3e4e784c7a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page