Skip to main content

PyTorch Encoding Package

Project description

PyPI PyPI Pre-release Upload Python Package Downloads License: MIT Build Docs Unit Test

PWC PWC

PyTorch-Encoding

created by Hang Zhang

Documentation

  • Please visit the Docs for detail instructions of installation and usage.

  • Please visit the link to image classification models.

  • Please visit the link to semantic segmentation models.

Citations

ResNeSt: Split-Attention Networks [arXiv]
Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin Lin, Yue Sun, Tong He, Jonas Muller, R. Manmatha, Mu Li and Alex Smola

@article{zhang2020resnest,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint},
year={2020}
}

Context Encoding for Semantic Segmentation [arXiv]
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal

@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}

Deep TEN: Texture Encoding Network [arXiv]
Hang Zhang, Jia Xue, Kristin Dana

@InProceedings{Zhang_2017_CVPR,
author = {Zhang, Hang and Xue, Jia and Dana, Kristin},
title = {Deep TEN: Texture Encoding Network},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-encoding-1.2.2b20200717.tar.gz (83.8 kB view details)

Uploaded Source

Built Distribution

torch_encoding-1.2.2b20200717-py2.py3-none-any.whl (126.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file torch-encoding-1.2.2b20200717.tar.gz.

File metadata

  • Download URL: torch-encoding-1.2.2b20200717.tar.gz
  • Upload date:
  • Size: 83.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for torch-encoding-1.2.2b20200717.tar.gz
Algorithm Hash digest
SHA256 6c3a93e1ca75007b3be9403db088a9f5c0e1538c23a398f0f8febd21b0dc17c3
MD5 2e03d8f7ab27dcbc2b79e6f9feff7db8
BLAKE2b-256 3e011e56edee176d0ff43e18a8994c7ff2bd720d025c397f0eecd9a748cc9796

See more details on using hashes here.

File details

Details for the file torch_encoding-1.2.2b20200717-py2.py3-none-any.whl.

File metadata

  • Download URL: torch_encoding-1.2.2b20200717-py2.py3-none-any.whl
  • Upload date:
  • Size: 126.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.8

File hashes

Hashes for torch_encoding-1.2.2b20200717-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cee68f8d53ac76daecfc3ad58e40191bde624bc52b5eae49ed0f2441523f6f21
MD5 8f99ea311e8ffc84dfad4cef14be9b0b
BLAKE2b-256 313782552e5f783e2cc00157bc4538f04260fb0f5b305f1232301ed19c06f68c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page