Skip to main content

utilities and pytorch datasets for the KITTI Vision Benchmark Suite

Project description

Pytorch KITTI

This project aims to provide a simple yet effective way to scaffold and load the KITTI Vision Banchmark Dataset providing Datasets, a simple way to download them, metrics and transformations.

Installation

To install torch-kitti

$ pip install torch-kitti

Scaffolding datasets

To manually download the datasets torch-kitti command line utility comes in handy:

$ torch_kitti download --help
usage: Torch Kitti download [-h]
                            {sync_rectified,depth_completion,depth_prediction}
                            path

positional arguments:
  {sync_rectified,depth_completion,depth_prediction}
                        name of the dataset to download
  path                  where scaffold the dataset

optional arguments:
  -h, --help            show this help message and exit

Actually available datasets are:

  • KITTI Depth Completion Dataset
  • KITTI Depth Prediction Dataset
  • KITTI Raw Sync+Rect Dataset

Loading Datasets

All datasets return dictionaries, utilities to manipulate them can be found in torch_kitti.transforms module. Often each dataset provides options to include optional fields, for instance KittiDepthCompletionDataset usually provides simply the img, its sparse depth groundtruth gt and the sparse lidar hints lidar but using load_stereo=True stereo images will be included for each example.

from torchvision.transforms import Compose, RandomCrop, ToTensor

from torch_kitti.depth_completion import KittiDepthCompletionDataset
from torch_kitti.transforms import ApplyToFeatures

transform = ApplyToFeatures(
    Compose(
        [
            ToTensor(),
            RandomCrop([256, 512]),
        ]
    ),
    features=["img", "gt", "lidar"],
)

ds = KittiDepthCompletionDataset(
    "kitti_raw_sync_rect_root",
    "kitti_depth_completion_root",
    load_stereo=False,
    transform=transform,
    download=True,  # download if not found
)

Develop

Download from kitti and cd in the folder then prepare a virtual environment (1), install dev and doc dependencies (2) and pre-commit (3).

$ git clone https://github.com/andreaconti/torch_kitti.git
$ cd torch_kitti
$ python3 -m virtualenv .venv && source .venv/bin/activate  # (1)
$ pip install .[dev, doc] # (2)
$ pre-commit install  # (3)
$ python3 setup.py develop
$ pytest

Tests use some environment variables to locate each dataset on the file system and perform specific tests on it. If they are not found tests are skipped.

  • KITTI_SYNC_RECT_ROOT: root of the kitti sync rect dataset
  • KITTI_DEPTH_COMPLETION_ROOT: root of the kitti depth completion dataset

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-kitti-0.1.0.tar.gz (17.6 kB view details)

Uploaded Source

Built Distribution

torch_kitti-0.1.0-py3-none-any.whl (29.9 kB view details)

Uploaded Python 3

File details

Details for the file torch-kitti-0.1.0.tar.gz.

File metadata

  • Download URL: torch-kitti-0.1.0.tar.gz
  • Upload date:
  • Size: 17.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.5

File hashes

Hashes for torch-kitti-0.1.0.tar.gz
Algorithm Hash digest
SHA256 421a35055e83c7b52b56bce73644a732e23e41332308e2357f7afd755822d893
MD5 f70dccb3725f8e117f3ad00b13de6e7e
BLAKE2b-256 cfd57250f0e4b7b32bb4dada4f960417bbbbfd76c6371e16675e0fab09c5af6a

See more details on using hashes here.

File details

Details for the file torch_kitti-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: torch_kitti-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 29.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.5

File hashes

Hashes for torch_kitti-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e2532ba4fbf70a8fc78283a6ffb239e9fd007cab512262029a20f026a3fe5e19
MD5 2a58f0053394db729ca0bb0368432dc6
BLAKE2b-256 2d4d5d9bacf398ce106d28abedf1186d513de6cdec4d2d33b51f5d32c937ac7d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page