Skip to main content

A PyTorch implementation of the Modified Discrete Cosine Transform (MDCT) and its inverse for audio processing.

Project description

torch_mdct

PyTorch implementation of Modified Discrete Cosine Transform and Inverse Modified Discrete Cosine Transform.

Installation

pip install torch_mdct

Usage

import torchaudio
from torch_mdct import MDCT, IMDCT

# Load a sample waveform 
waveform, sample_rate = torchaudio.load("/path/to/audio.file")

# Initialize the mdct and imdct transforms
mdct = MDCT(win_length=2048)
imdct = IMDCT(win_length=2048)

# Transform waveform into mdct spectrogram
spectrogram = mdct(waveform)

# Transform spectrogram back to audio 
reconst_waveform = imdct(spectrogram)

# Compute the differences
print(f"L1: {(waveform - reconst_waveform).abs().mean()}")

References

[1] Zaf-Python: Zafar's Audio Functions in Python for audio signal analysis.

[2] MDCT: A fast MDCT implementation using SciPy and FFTs.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_mdct-0.1.0.tar.gz (3.0 MB view details)

Uploaded Source

Built Distribution

torch_mdct-0.1.0-py3-none-any.whl (5.7 kB view details)

Uploaded Python 3

File details

Details for the file torch_mdct-0.1.0.tar.gz.

File metadata

  • Download URL: torch_mdct-0.1.0.tar.gz
  • Upload date:
  • Size: 3.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for torch_mdct-0.1.0.tar.gz
Algorithm Hash digest
SHA256 0f3b454bfb7a8ee4954e8d5c045d5906340799c349846b8b03fcb6d2abcdacb3
MD5 c90a7fb748a2e8ce5e8f5d124b5f25d5
BLAKE2b-256 8fb0eaa9a7b48f5ffc1dac51d06e14e27fb3382ea891e24f39667ca3286182d3

See more details on using hashes here.

File details

Details for the file torch_mdct-0.1.0-py3-none-any.whl.

File metadata

  • Download URL: torch_mdct-0.1.0-py3-none-any.whl
  • Upload date:
  • Size: 5.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.11.8

File hashes

Hashes for torch_mdct-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7933f1265bc95bd595d4fc2e606a5c89ab49a2874b74359294b9764f49accca1
MD5 2d04455ad5ec3836fc75e39a78d53fa2
BLAKE2b-256 cb4c0645cfdcae6fa39cb9ebe97c7bcc309585ac330da9f7e282e08850dfd65c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page