Skip to main content

Training of multi-label embeddings for k-shingled input sequences for PyTorch.

Project description

PyPI version DOI Total alerts Language grade: Python

torch-multilabel-embedding

The package contains a TensorFlow2/Keras class to train an Embedding matrix for multi-label inputs, i.e. instead of 1 ID per token (one hot encoding), N IDs per token can be provided as model input.

An TensorFlow2/Keras implementation can be found here: https://github.com/ulf1/keras-multilabel-embedding (pip install keras-multilabel-embedding)

Usage

import torch_multilabel_embedding as tml
import torch

# a sequence of multi-label data points
x_ids = [[1, 2, 4], [0, 1, 2], [2, 1, 4], [3, 2, 1]]
x_ids = torch.tensor(x_ids)

# initialize layer
layer = tml.MultiLabelEmbedding(
    vocab_size=5, embed_size=300, random_state=42)

# predict
y = layer(x_ids)

Appendix

Installation

The torch-multilabel-embedding git repo is available as PyPi package

pip install torch-multilabel-embedding
pip install git+ssh://git@github.com/ulf1/torch-multilabel-embedding.git

Install a virtual environment

python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt --no-cache-dir
pip install -r requirements-dev.txt --no-cache-dir
pip install -r requirements-demo.txt --no-cache-dir

(If your git repo is stored in a folder with whitespaces, then don’t use the subfolder .venv. Use an absolute path without whitespaces.)

Python commands

  • Jupyter for the examples: jupyter lab

  • Check syntax: flake8 --ignore=F401 --exclude=$(grep -v '^#' .gitignore | xargs | sed -e 's/ /,/g')

  • Run Unit Tests: PYTHONPATH=. pytest

Publish

pandoc README.md --from markdown --to rst -s -o README.rst
python setup.py sdist
twine upload -r pypi dist/*

Clean up

find . -type f -name "*.pyc" | xargs rm
find . -type d -name "__pycache__" | xargs rm -r
rm -r .pytest_cache
rm -r .venv

Support

Please open an issue for support.

Contributing

Please contribute using Github Flow. Create a branch, add commits, and open a pull request.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-multilabel-embedding-0.1.1.tar.gz (7.7 kB view details)

Uploaded Source

File details

Details for the file torch-multilabel-embedding-0.1.1.tar.gz.

File metadata

  • Download URL: torch-multilabel-embedding-0.1.1.tar.gz
  • Upload date:
  • Size: 7.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.8.2 requests/2.27.1 setuptools/60.9.3 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.9

File hashes

Hashes for torch-multilabel-embedding-0.1.1.tar.gz
Algorithm Hash digest
SHA256 3c7c4b7e4786582aed136bbd303daf512b408ee454af17aa402f4225fbd7c8ce
MD5 4160995ca14441be661c2b9a13e26b64
BLAKE2b-256 071556bdb3fc8575ae45b3e82dfc0e433d5fe1cd4df20b55d07ce169b426fe10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page