Skip to main content

Proximity Graph Networks: Predicting ligand affinity with Message Passing Neural Networks

Project description

torch_pgn

Proximity Graph Networks (torch_pgn) is a pytorch toolkit allowing for the modular application of multiple different encoder architectures to cheminformatic tasks centered around protein-ligand complexes. Alpha version of documentation is available at: https://torch-pgn.readthedocs.io/en/latest/index.html.

Installation

torch-pgn either be installed from PyPi using the pip command or from source. We assume that all users are using conda, if you do not have conda, please install Miniconda from https://conda.io/miniconda.html.

Installation using pip (cpu only)

  1. conda create --name torch_pgn python=3.7
  2. conda activate torch_pgn
  3. pip install torch_pgn
  4. conda install pytorch-sparse -c pyg
  5. conda install -c conda-forge openbabel

Installation using pip (cuda)

  1. conda create --name torch_pgn python=3.7
  2. conda activate torch_pgn
  3. conda install pytorch==1.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
  4. conda install pyg -c pyg
  5. conda install pytorch-sparse -c pyg
  6. conda install -c conda-forge openbabel
  7. pip install torch_pgn

Installation from source

  1. git clone https://github.com/keiserlab/torch_pgn/torch_pgn.git
  2. cd torch_pgn
  3. conda env create -f environment.yml
  4. conda activate torch_pgn
  5. pip install -e

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

torch_pgn-0.1.3-py3-none-any.whl (56.6 kB view details)

Uploaded Python 3

File details

Details for the file torch_pgn-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: torch_pgn-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 56.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.12

File hashes

Hashes for torch_pgn-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 ef372d5668cf5db27bd71c9b665ac5c45ac1149969f270408e15a2439eeafa46
MD5 c32e94eee58f80b9b536ddcd8ba79293
BLAKE2b-256 9565c0fbda1e61027b4bfced0702ef29bef4fd4a5564641a6f0b202dee546af7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page