Skip to main content

A PyTorch implementation of the Planck 2018 Lite likelihood for the Cosmic Microwave Background (CMB) power spectra

Project description

Torch Planck 2018 Lite

Torch Planck 2018 Lite is a PyTorch implementation of the Planck 2018 Lite likelihood for the Cosmic Microwave Background (CMB) power spectra. This package provides a convenient and efficient way to compute the log-likelihood of CMB power spectra given a cosmological model.

Installation

You can install Torch Planck 2018 Lite via pip from PyPI:

pip install torch-planck2018-lite

This package requires Python 3.6 or later and PyTorch 1.7 or later.

Usage

To use the Torch Planck 2018 Lite package, you can import the PlanckLitePy class and create an instance with the desired settings:

from torch_planck2018_lite import PlanckLitePy

# Initialize the PlanckLitePy object
planck = PlanckLitePy(year=2018, spectra="TTTEEE", use_low_ell_bins=False)

# Load the power spectra
import numpy as np
ls, Dltt, Dlte, Dlee = np.genfromtxt("path/to/your/data/Dl_planck2015fit.dat", unpack=True)

# Compute the log-likelihood
ellmin = int(ls[0])
loglikelihood = planck.loglike(Dltt, Dlte, Dlee, ellmin)

You can customize the behavior of the PlanckLitePy object by changing its constructor parameters:

  • year: The Planck data release year (2015 or 2018).
  • spectra: The CMB power spectra to use ("TTTEEE" for TT, TE, and EE or "TT" for TT only).
  • use_low_ell_bins: Whether to include low-ell bins in the likelihood calculation (True or False).

Running Tests

To run the tests, you can use the unittest module:

python -m unittest discover tests

this will run all the test cases defined in the tests directory.

Licesnse

This project is under the MIT License. See the LICENSE file for more details.

Credit

This is a PyTorch implementation of the planck-lite-py code by Heather Prince.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-planck2018-lite-0.1.0.tar.gz (3.2 MB view details)

Uploaded Source

Built Distribution

torch_planck2018_lite-0.1.0-py3-none-any.whl (6.1 kB view details)

Uploaded Python 3

File details

Details for the file torch-planck2018-lite-0.1.0.tar.gz.

File metadata

  • Download URL: torch-planck2018-lite-0.1.0.tar.gz
  • Upload date:
  • Size: 3.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.10

File hashes

Hashes for torch-planck2018-lite-0.1.0.tar.gz
Algorithm Hash digest
SHA256 511834f706289ca08f2c5fe48e6e2774454d9c4e419a84c13e0adfeb8c380554
MD5 04565e55d97bc84bc71af99400020d31
BLAKE2b-256 fc66d3cf9de3768f337d0acda489ce83deb6f67882da563b817a3f20d4b6e927

See more details on using hashes here.

File details

Details for the file torch_planck2018_lite-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_planck2018_lite-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5b28fad3180df1f42dc6b978eae5b1d138979ea41db2c6c1a952f7871f5fdf82
MD5 edf10d142ca3bedd5c6b9b7563b318ad
BLAKE2b-256 07b805f05fb8d11b9385e41348d98cf013602571de5ce428e3f9f23b67a794aa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page