A PyTorch implementation of the Planck 2018 Lite likelihood for the Cosmic Microwave Background (CMB) power spectra
Project description
Torch Planck 2018 Lite
Torch Planck 2018 Lite is a PyTorch implementation of the Planck 2018 Lite likelihood for the Cosmic Microwave Background (CMB) power spectra. This package provides a convenient and efficient way to compute the log-likelihood of CMB power spectra given a cosmological model.
Installation
You can install Torch Planck 2018 Lite via pip from PyPI:
pip install torch-planck2018-lite
This package requires Python 3.6 or later and PyTorch 1.7 or later.
Usage
To use the Torch Planck 2018 Lite package, you can import the PlanckLitePy
class and create an instance with the desired settings:
from torch_planck2018_lite import PlanckLitePy
# Initialize the PlanckLitePy object
planck = PlanckLitePy(year=2018, spectra="TTTEEE", use_low_ell_bins=False)
# Load the power spectra
import numpy as np
ls, Dltt, Dlte, Dlee = np.genfromtxt("path/to/your/data/Dl_planck2015fit.dat", unpack=True)
# Compute the log-likelihood
ellmin = int(ls[0])
loglikelihood = planck.loglike(Dltt, Dlte, Dlee, ellmin)
You can customize the behavior of the PlanckLitePy
object by changing its constructor parameters:
year
: The Planck data release year (2015 or 2018).spectra
: The CMB power spectra to use ("TTTEEE" for TT, TE, and EE or "TT" for TT only).use_low_ell_bins
: Whether to include low-ell bins in the likelihood calculation (True or False).
Running Tests
To run the tests, you can use the unittest
module:
python -m unittest discover tests
this will run all the test cases defined in the tests
directory.
Licesnse
This project is under the MIT License. See the LICENSE file for more details.
Credit
This is a PyTorch implementation of the planck-lite-py
code by Heather Prince.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torch-planck2018-lite-0.1.0.tar.gz
.
File metadata
- Download URL: torch-planck2018-lite-0.1.0.tar.gz
- Upload date:
- Size: 3.2 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 511834f706289ca08f2c5fe48e6e2774454d9c4e419a84c13e0adfeb8c380554 |
|
MD5 | 04565e55d97bc84bc71af99400020d31 |
|
BLAKE2b-256 | fc66d3cf9de3768f337d0acda489ce83deb6f67882da563b817a3f20d4b6e927 |
File details
Details for the file torch_planck2018_lite-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: torch_planck2018_lite-0.1.0-py3-none-any.whl
- Upload date:
- Size: 6.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5b28fad3180df1f42dc6b978eae5b1d138979ea41db2c6c1a952f7871f5fdf82 |
|
MD5 | edf10d142ca3bedd5c6b9b7563b318ad |
|
BLAKE2b-256 | 07b805f05fb8d11b9385e41348d98cf013602571de5ce428e3f9f23b67a794aa |