Skip to main content

A Toolkit for Training, Tracking and Saving PyTorch Models

Project description

# Torch-Scope

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Documentation Status](https://readthedocs.org/projects/tensorboard-wrapper/badge/?version=latest)](http://tensorboard-wrapper.readthedocs.io/en/latest/?badge=latest)
[![Downloads](https://pepy.tech/badge/torch-scope)](https://pepy.tech/project/torch-scope)
[![PyPI version](https://badge.fury.io/py/torch-scope.svg)](https://badge.fury.io/py/torch-scope)

A Toolkit for training pytorch models, which has three features:

- Tracking environments, dependency, implementations and checkpoints;
- Providing a logger wrapper with two handlers (to ```std``` and ```file```);
- Supporting automatic device selection;
- Providing a tensorboard wrapper;
- Providing a spreadsheet writer to automatically summarizing notes and results;

We are in an early-release beta. Expect some adventures and rough edges.

## Quick Links

- [Installation](#installation)
- [Usage](#usage)

## Installation

To install via pypi:
```
pip install torch-scope
```

To build from source:
```
pip install git+https://github.com/LiyuanLucasLiu/Torch-Scope
```
or
```
git clone https://github.com/LiyuanLucasLiu/Torch-Scope.git
cd Torch-Scope
python setup.py install
```

## Usage

An example is provided as below, please read the doc for a detailed api explaination.

* set up the git in the server & add all source file to the git
* use tensorboard to track the model stats (tensorboard --logdir PATH/log/ --port ####)

```
from torch_scope import wrapper
...

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('--checkpoint_path', type=str, ...)
parser.add_argument('--name', type=str, ...)
parser.add_argument('--gpu', type=str, ...)
...
args = parser.parse_args()

pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = False)
# Or if the current folder is binded with git, you can turn on the git tracking as below
# pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = True)
# if you properly set the path to credential_path and want to use spreadsheet writer, turn on sheet tracking as below
# pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, \
# enable_git_track=args.git_tracking, sheet_track_name=args.spreadsheet_name, \
# credential_path="/data/work/jingbo/ll2/Torch-Scope/torch-scope-8acf12bee10f.json")


gpu_index = pw.auto_device() if 'auto' == args.gpu else int(args.gpu)
device = torch.device("cuda:" + str(gpu_index) if gpu_index >= 0 else "cpu")

pw.save_configue(args) # dump the config to config.json

pw.set_level('info') # or 'debug', etc.

# if the spreadsheet writer is enabled, you can add a description about the current model
# pw.add_description(args.description)

pw.info(str(args)) # would be plotted to std & file if level is 'info' or lower

...

batch_index = 0

for index in range(epoch):

...

for instance in ... :

loss = ...

tot_loss += loss.detach()
loss.backward()

if batch_index % ... = 0:
pw.add_loss_vs_batch({'loss': tot_loss / ..., ...}, batch_index, False)
pw.add_model_parameter_stats(model, batch_index, save=True)
optimizer.step()
pw.add_model_update_stats(model, batch_index)
tot_loss = 0
else:
optimizer.step()

batch_index += 1

dev_score = ...
pw.add_loss_vs_batch({'dev_score': dev_score, ...}, index, True)

if dev_score > best_score:
pw.save_checkpoint(model, optimizer, is_best = True)
best_score = dev_score
else:
pw.save_checkpoint(model, optimizer, is_best = False)
```

## Advanced Usage

### Auto Device

### Git Tracking

### Spreadsheet Logging

Share the spreadsheet with the following account ```torch-scope@torch-scope.iam.gserviceaccount.com```. And access the table with its name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-scope-0.4.4.tar.gz (13.9 kB view details)

Uploaded Source

File details

Details for the file torch-scope-0.4.4.tar.gz.

File metadata

  • Download URL: torch-scope-0.4.4.tar.gz
  • Upload date:
  • Size: 13.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.18.4 setuptools/38.4.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.4

File hashes

Hashes for torch-scope-0.4.4.tar.gz
Algorithm Hash digest
SHA256 0470c000e8a24f76bfad54d5fa4e762d1f0ad9f0a71e691025102397e3cc1880
MD5 1ba8e37c31a6a072d90b5748b19780a9
BLAKE2b-256 0cb0b5570e32818f372a95895655b5b882789df1b2d8fc71a2651762772aea43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page