Skip to main content

A Toolkit for Training, Tracking and Saving PyTorch Models

Project description

# Torch-Scope

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Documentation Status](https://readthedocs.org/projects/tensorboard-wrapper/badge/?version=latest)](http://tensorboard-wrapper.readthedocs.io/en/latest/?badge=latest)
[![Downloads](https://pepy.tech/badge/torch-scope)](https://pepy.tech/project/torch-scope)
[![PyPI version](https://badge.fury.io/py/torch-scope.svg)](https://badge.fury.io/py/torch-scope)

A Toolkit for training pytorch models, which has three features:

- Tracking environments, dependency, implementations and checkpoints;
- Providing a logger wrapper with two handlers (to ```std``` and ```file```);
- Supporting automatic device selection;
- Providing a tensorboard wrapper;
- Providing a spreadsheet writer to automatically summarizing notes and results;

We are in an early-release beta. Expect some adventures and rough edges.

## Quick Links

- [Installation](#installation)
- [Usage](#usage)

## Installation

To install via pypi:
```
pip install torch-scope
```

To build from source:
```
pip install git+https://github.com/LiyuanLucasLiu/Torch-Scope
```
or
```
git clone https://github.com/LiyuanLucasLiu/Torch-Scope.git
cd Torch-Scope
python setup.py install
```

## Usage

An example is provided as below, please read the doc for a detailed api explaination.

* set up the git in the server & add all source file to the git
* use tensorboard to track the model stats (tensorboard --logdir PATH/log/ --port ####)

```
from torch_scope import wrapper
...
logger = logging.getLogger(__name__)

if __name__ == '__main__':

parser = argparse.ArgumentParser()

parser.add_argument('--checkpoint_path', type=str, ...)
parser.add_argument('--name', type=str, ...)
parser.add_argument('--gpu', type=str, ...)
...
args = parser.parse_args()

pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = False)
# Or if the current folder is binded with git, you can turn on the git tracking as below
# pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = True)
# if you properly set the path to credential_path and want to use spreadsheet writer, turn on sheet tracking as below
# pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, \
# enable_git_track=args.git_tracking, sheet_track_name=args.spreadsheet_name, \
# credential_path="/data/work/jingbo/ll2/Torch-Scope/torch-scope-8acf12bee10f.json")


gpu_index = pw.auto_device() if 'auto' == args.gpu else int(args.gpu)
device = torch.device("cuda:" + str(gpu_index) if gpu_index >= 0 else "cpu")

pw.save_configue(args) # dump the config to config.json

# if the spreadsheet writer is enabled, you can add a description about the current model
# pw.add_description(args.description)

logger.info(str(args)) # would be plotted to std & file if level is 'info' or lower

...

batch_index = 0

for index in range(epoch):

...

for instance in ... :

loss = ...

tot_loss += loss.detach()
loss.backward()

if batch_index % ... = 0:
pw.add_loss_vs_batch({'loss': tot_loss / ..., ...}, batch_index, False)
pw.add_model_parameter_stats(model, batch_index, save=True)
optimizer.step()
pw.add_model_update_stats(model, batch_index)
tot_loss = 0
else:
optimizer.step()

batch_index += 1

dev_score = ...
pw.add_loss_vs_batch({'dev_score': dev_score, ...}, index, True)

if dev_score > best_score:
pw.save_checkpoint(model, optimizer, is_best = True)
best_score = dev_score
else:
pw.save_checkpoint(model, optimizer, is_best = False)
```

## Advanced Usage

### Auto Device

### Git Tracking

### Spreadsheet Logging

Share the spreadsheet with the following account ```torch-scope@torch-scope.iam.gserviceaccount.com```. And access the table with its name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-scope-0.5.1.tar.gz (13.8 kB view details)

Uploaded Source

File details

Details for the file torch-scope-0.5.1.tar.gz.

File metadata

  • Download URL: torch-scope-0.5.1.tar.gz
  • Upload date:
  • Size: 13.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.26.0 CPython/3.7.0

File hashes

Hashes for torch-scope-0.5.1.tar.gz
Algorithm Hash digest
SHA256 816972c4d8a15aecaf47cbbeb2dce26816f2900a2920650cd24bc417f4a8b3cf
MD5 3ae9b4653998279911fec80dd3de4e61
BLAKE2b-256 60d8c047a4db69696da0b15f60515e0df5a6d5f929197444f6e34a67f5266784

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page