Skip to main content

A Toolkit for Training, Tracking and Saving PyTorch Models

Project description

Torch-Scope

License Documentation Status Downloads PyPI version

A Toolkit for training pytorch models, which has three features:

  • Tracking environments, dependency, implementations and checkpoints;
  • Providing a logger wrapper with two handlers (to std and file);
  • Supporting automatic device selection;
  • Providing a tensorboard wrapper;
  • Providing a spreadsheet writer to automatically summarizing notes and results;

We are in an early-release beta. Expect some adventures and rough edges.

Quick Links

Installation

To install via pypi:

pip install torch-scope

To build from source:

pip install git+https://github.com/LiyuanLucasLiu/Torch-Scope

or

git clone https://github.com/LiyuanLucasLiu/Torch-Scope.git
cd Torch-Scope
python setup.py install

Usage

An example is provided as below, please read the doc for a detailed api explaination.

  • set up the git in the server & add all source file to the git
  • use tensorboard to track the model stats (tensorboard --logdir PATH/log/ --port ####)
from torch_scope import wrapper
...
logger = logging.getLogger(__name__)

if __name__ == '__main__':

    parser = argparse.ArgumentParser()

    parser.add_argument('--checkpoint_path', type=str, ...)
    parser.add_argument('--name', type=str, ...)
    parser.add_argument('--gpu', type=str, ...)
    ...
    args = parser.parse_args()

    pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = False)
    # Or if the current folder is binded with git, you can turn on the git tracking as below
    # pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, enable_git_track = True)
    # if you properly set the path to credential_path and want to use spreadsheet writer, turn on sheet tracking as below
    # pw = wrapper(os.path.join(args.checkpoint_path, args.name), name = args.log_dir, \
    #             enable_git_track=args.git_tracking, sheet_track_name=args.spreadsheet_name, \ 
    #             credential_path="/data/work/jingbo/ll2/Torch-Scope/torch-scope-8acf12bee10f.json")
    
    
    gpu_index = pw.auto_device() if 'auto' == args.gpu else int(args.gpu)
    device = torch.device("cuda:" + str(gpu_index) if gpu_index >= 0 else "cpu")

    pw.save_configue(args) # dump the config to config.json

    # if the spreadsheet writer is enabled, you can add a description about the current model
    # pw.add_description(args.description) 

    logger.info(str(args)) # would be plotted to std & file if level is 'info' or lower

    ...

    batch_index = 0

    for index in range(epoch):

    	...

    	for instance in ... :

    		loss = ...

    		tot_loss += loss.detach()
    		loss.backward()

    		if batch_index % ... = 0:
    			pw.add_loss_vs_batch({'loss': tot_loss / ..., ...}, batch_index, False)
    			pw.add_model_parameter_stats(model, batch_index, save=True)
    			optimizer.step()
    			pw.add_model_update_stats(model, batch_index)
    			tot_loss = 0
    		else:
    			optimizer.step()

    		batch_index += 1

    	dev_score = ...
    	pw.add_loss_vs_batch({'dev_score': dev_score, ...}, index, True)

    	if dev_score > best_score:
    		pw.save_checkpoint(model, optimizer, is_best = True)
    		best_score = dev_score
    	else:
    		pw.save_checkpoint(model, optimizer, is_best = False)

Advanced Usage

Auto Device

Git Tracking

Spreadsheet Logging

Share the spreadsheet with the following account torch-scope@torch-scope.iam.gserviceaccount.com. And access the table with its name.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-scope-0.5.3.tar.gz (14.0 kB view details)

Uploaded Source

File details

Details for the file torch-scope-0.5.3.tar.gz.

File metadata

  • Download URL: torch-scope-0.5.3.tar.gz
  • Upload date:
  • Size: 14.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for torch-scope-0.5.3.tar.gz
Algorithm Hash digest
SHA256 09c5752aff18c042152fa21f5db56619245adcdc9a2aa9fbfd9b0206dbd96f3d
MD5 3704b6fd9f1fac229ac7618bc1746d49
BLAKE2b-256 791446892ff6e4c7fe6403efab096e727a4a64d9767f58fd75366748ebdba82f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page