skeleton datasets and transforms for pytorch
Project description
torch_skeleton
Efficient datasets and transforms for skeleton data
Installation
$ pip install torch_skeleton
Datasets
Download and load raw dataset with preprocess
from torch_skeleton.datasets import NTU
import torch_skeleton.transforms as T
# dwonload ntu skeleton dataset
ntu = NTU(
root="data",
num_classes=60,
eval_type="subject",
split="train",
transform=T.Compose([
T.Denoise(),
T.CenterJoint(),
T.SplitFrames(),
]),
)
x, y = ntu[0]
Cache preprocessed samples to disk
from torch_skeleton.datasets import DiskCache
# cache preprocessing transforms to disk
cache = DiskCache(root="data/NTU", dataset=dataset)
x, y = cache[0]
Apply augmentations to a dataset
from torch_skeleton.datasets import Apply
# cache preprocessing transforms to disk
cache = Apply(
dataset=dataset,
transform=T.Compose([
T.SampleFrames(num_frames=20),
T.RandomRotate(degrees=17),
T.PadFrames(max_frames=20),
]),
)
x, y = cache[0]
License
torch_skeleton
was created by Chanhyuk Jung. It is licensed under the terms
of the MIT license.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torch_skeleton-0.1.0.tar.gz
(16.8 kB
view details)
Built Distribution
File details
Details for the file torch_skeleton-0.1.0.tar.gz
.
File metadata
- Download URL: torch_skeleton-0.1.0.tar.gz
- Upload date:
- Size: 16.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a3211b8e5c7e7bf61e944504ed9e149771d80d666ebdc7ca08d19a9c0e68ed98 |
|
MD5 | 7478d7b8d68d0b24f07c3cd3f51933c6 |
|
BLAKE2b-256 | d4b54d6019d22f39f367e40e6a7f65097fb9175c46971cbb0cdf83b976b73f37 |
File details
Details for the file torch_skeleton-0.1.0-py3-none-any.whl
.
File metadata
- Download URL: torch_skeleton-0.1.0-py3-none-any.whl
- Upload date:
- Size: 19.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 20341764f924022f46a3e2da808d959e84effaf197e0686d075f9a75d120d266 |
|
MD5 | a56cf94de03c247b2875df53c54cf1d4 |
|
BLAKE2b-256 | 130cb016f2e3d2b32875bae7fa48175288aec04dcfddf4198ab0a8ee278049d1 |