Skip to main content

skeleton datasets and transforms for pytorch

Project description

torch_skeleton

Efficient datasets and transforms for skeleton data

Installation

$ pip install torch_skeleton

Documentation

https://torch-skeleton.readthedocs.io/en/latest/index.html#

Datasets

Download and load raw dataset with preprocess

from torch_skeleton.datasets import NTU
import torch_skeleton.transforms as T

# dwonload ntu skeleton dataset
ntu = NTU(
    root="data",
    num_classes=60,
    eval_type="subject",
    split="train",
    transform=T.Compose([
        T.Denoise(),
        T.CenterJoint(),
        T.SplitFrames(),
    ]),
)

x, y = ntu[0]

Cache preprocessed samples to disk

from torch_skeleton.datasets import DiskCache

# cache preprocessing transforms to disk
cache = DiskCache(root="data/NTU", dataset=dataset)

x, y = cache[0]

Apply augmentations to a dataset

from torch_skeleton.datasets import Apply

# cache preprocessing transforms to disk
cache = Apply(
    dataset=dataset, 
    transform=T.Compose([
        T.SampleFrames(num_frames=20),
        T.RandomRotate(degrees=17),
        T.PadFrames(max_frames=20),
    ]),
)

x, y = cache[0]

Training Models using torch_skeleton

Example Training code using torch_skeleton is available under examples

Supported models:

  • SGN

License

torch_skeleton was created by Chanhyuk Jung. It is licensed under the terms of the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_skeleton-0.1.1.tar.gz (17.1 kB view details)

Uploaded Source

Built Distribution

torch_skeleton-0.1.1-py3-none-any.whl (19.6 kB view details)

Uploaded Python 3

File details

Details for the file torch_skeleton-0.1.1.tar.gz.

File metadata

  • Download URL: torch_skeleton-0.1.1.tar.gz
  • Upload date:
  • Size: 17.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for torch_skeleton-0.1.1.tar.gz
Algorithm Hash digest
SHA256 70dce55c532262cf81fff38c557d6ff2b673ed8208f8e964efeb4763f1f04319
MD5 72e3c3d9fe01fcfdd352d177381a71c5
BLAKE2b-256 16e64a389ef0cec7b3cf54cc5643577b2220ec9c1f9addaf191965e3941eda8b

See more details on using hashes here.

File details

Details for the file torch_skeleton-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_skeleton-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d750a18af946c9b0a0c27f41f13fb6f29cddae947eeb48a1390ae6ac4b5fdc30
MD5 644c0320b8d902a1069fefb950549854
BLAKE2b-256 a50d2b1b33355524e4fc944c3b54f9cc05493375d0a924898c09d13d074edd90

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page