Skip to main content

Practical Pipelining for pyTorch

Project description

Torch Tensor Types

This package is a Quality of Life improvement when prototyping and processing Tensor objects from the pyTorch library. The TensorType class is a Pipeline for preprocessing tensors automatically, and include multiple utility methods. my_TensorType<<myData You can add TensorTypes together to have a longer preprocessing pipeline. myTensorType + myOtherTensorType

For example, this code

fake_image = model(torch.unsqueeze(real_image, 0).cuda()).cpu().detach().numpy()[0]

can be replaced by

fake_image = SingleDisplayableImage<<model(ModelInputFormat<<real_image)

The list of arguments to the constructor is:

TensorType:
__init__(shape=None, transforms=[], 
to_batch=False, device=None, from_single_value=False,
random_values=False, to_numpy=False, detach=False):

All of these should be pretty telling by their name, if you know pyTorch.

  • TensorType.shape: the input will be viewed as this shape
  • TensorType.transforms: a list of functions that will be applied at the end
  • TorchType.to_batch: will unsqueeze the data into a batch with a single sample
  • TorchType.device: transfers the tensor to a device
  • TorchType.from_single_value: creates a uniform tensor from a single value
  • TorchType.random_values: creates a tensor from torch.rand
  • TensorType.to_numpy: outputs a numpy array
  • TensorType.detach: detachs the tensor from the graph

Syntax

from TTT import TensorType as TT
# Creates a uniform image tensor pipeline
myTensorType = TT(shape=(3, 224, 224), from_single_value=True)
# A black image
data = myTensorType<<0
# "myTensorType" will parse first, then the other TT
myDisplayableImage = myTensorType + TT(to_numpy=True, transforms=[np.transpose])
# A white image ready to display
myDisplayableImage<<1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch-tensor-type-0.0.3.tar.gz (2.5 kB view details)

Uploaded Source

Built Distribution

torch_tensor_type-0.0.3-py3-none-any.whl (4.3 kB view details)

Uploaded Python 3

File details

Details for the file torch-tensor-type-0.0.3.tar.gz.

File metadata

  • Download URL: torch-tensor-type-0.0.3.tar.gz
  • Upload date:
  • Size: 2.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torch-tensor-type-0.0.3.tar.gz
Algorithm Hash digest
SHA256 de4e7d65eea2e186d0159c7a4d5e72635e6f9c66ddf78181459f69a03b5cd6a8
MD5 96d58f995df16f2421bc3b5a0e4ab974
BLAKE2b-256 410c65510e9fb13e29151fb4dbba0e4db3219f7655f4363fb14a0a831976a67f

See more details on using hashes here.

File details

Details for the file torch_tensor_type-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: torch_tensor_type-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 4.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for torch_tensor_type-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 536a42edc72053b46d277c7b12f59d100be714f9a8afba7c962c6f5e71662c96
MD5 e1be897e4ab72356540d1d063bb7bcd4
BLAKE2b-256 bae17ff448284424c8dfc4a823857df59db4520c3a77f2c2f59928c4b9269db6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page