Practical Pipelining for pyTorch
Project description
Torch Tensor Types
This package is a Quality of Life improvement when prototyping and processing Tensor objects from the pyTorch library.
The TensorType class is a Pipeline for preprocessing tensors automatically, and include multiple utility methods. my_TensorType<<myData
You can add TensorTypes together to have a longer preprocessing pipeline. myTensorType + myOtherTensorType
For example, this code
fake_image = model(torch.unsqueeze(real_image, 0).cuda()).cpu().detach().numpy()[0]
can be replaced by
fake_image = SingleDisplayableImage<<model(ModelInputFormat<<real_image)
The list of arguments to the constructor is:
TensorType:
__init__(shape=None, transforms=[], torch_methods=[],
to_batch=False, device=None, from_single_value=False,
random_values=False, to_numpy=False, detach=False):
All of these should be pretty telling by their name, if you know pyTorch.
TensorType.shape
: the input will be viewed as this shapeTensorType.transforms
: a list of functions that will be applied at the endTensorType.torch_methods
: a list of method names that will be called on the tensor i.e"mean" => tensor.mean()
TorchType.to_batch
: will unsqueeze the data into a batch with a single sampleTorchType.device
: transfers the tensor to a deviceTorchType.from_single_value
: creates a uniform tensor from a single valueTorchType.random_values
: creates a tensor fromtorch.rand
TensorType.to_numpy
: outputs a numpy arrayTensorType.detach
: detachs the tensor from the graph
Syntax
from TTT import TensorType as TT
# Creates a uniform image tensor pipeline
myTensorType = TT(shape=(3, 224, 224), from_single_value=True)
# A black image
data = myTensorType<<0
# "myTensorType" will parse first, then the other TT
myDisplayableImage = myTensorType + TT(to_numpy=True, transforms=[np.transpose])
# A white image ready to display
myDisplayableImage<<1
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file torch-tensor-type-0.1.1.tar.gz
.
File metadata
- Download URL: torch-tensor-type-0.1.1.tar.gz
- Upload date:
- Size: 2.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a8e4d4d79c0d4761f8d3c0b0416fec05bd9cf287baa60eb9807fe292986fc24e |
|
MD5 | d82c8634f5f74d8ada272beff4602735 |
|
BLAKE2b-256 | 069493b4cf8eafba5d8f7a0d49e7e4f1cb98c5c42365b1f304e25344d5ab0668 |
File details
Details for the file torch_tensor_type-0.1.1-py3-none-any.whl
.
File metadata
- Download URL: torch_tensor_type-0.1.1-py3-none-any.whl
- Upload date:
- Size: 4.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.1.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5e218a91a4b0d4fa6928c33c337d71874510116490eea9b1ff8606242fc5e93 |
|
MD5 | c36a9e0bae74f532bc4e57e04c93d9be |
|
BLAKE2b-256 | 5fcdaaafd66ddc8e12c4696df6a656e7ece3ad3d5baf6583e6441a9ded1afada |