Skip to main content

Timeseries Learning Library for PyTorch.

Project description

pytorch_timeseries

An all in one deep learning library that boost your timeseries research.

installation

pip install pytorch-timeseries

documentation

See Documentation.

Quick Start

from torch_timeseries.dataset import ETTh1
from torch_timeseries.dataloader import StandardScaler, SlidingWindow, SlidingWindowTS
from torch_timeseries.model import DLinear
from torch.nn import MSELoss, L1Loss
from torch.optim import Adam
dataset = ETTh1('./data')
scaler = StandardScaler()
dataloader = SlidingWindowTS(dataset, 
                        window=96,
                        horizon=1,
                        steps=336,
                        batch_size=32, 
                        train_ratio=0.7, 
                        val_ratio=0.2, 
                        scaler=scaler,
                        )


model = DLinear(dataloader.window, dataloader.steps, dataset.num_features, individual= True)

optimizer = Adam(model.parameters())
loss_function = MSELoss()


# train
model.train()
for scaled_x, scaled_y, x, y, x_date_enc, y_date_enc in dataloader.train_loader:
    optimizer.zero_grad()
    
    scaled_x = scaled_x.float()
    scaled_y = scaled_y.float()
    scaled_pred_y = model(scaled_x) 
    
    loss = loss_function(scaled_pred_y, scaled_y)
    loss.backward()
    optimizer.step()
    print(loss)
# val
model.eval()
for scaled_x, scaled_y, x, y, x_date_enc, y_date_enc in dataloader.val_loader:
    scaled_x = scaled_x.float()
    scaled_y = scaled_y.float()
    scaled_pred_y = model(scaled_x) 
    loss = loss_function(scaled_pred_y, scaled_y)
    

# test
model.eval()
for scaled_x, scaled_y, x, y, x_date_enc, y_date_enc in dataloader.test_loader:
    scaled_x = scaled_x.float()
    scaled_y = scaled_y.float()
    scaled_pred_y = model(scaled_x) 
    loss = loss_function(scaled_pred_y, scaled_y)
    

dev install

install requirements

Note:This library assumes that you've installed Pytorch according to it's official website, the basic dependencies of torch > > related libraries may not be listed in the requirements files: https://pytorch.org/get-started/locally/

The recommended python version is 3.8.1+. Please first install torch according to your environment.

pip3 install torch torchvision torchaudio

For running Graph Nerual Network based models, pytorch_geometric is also needed.

pip install torch_geometric

# Optional dependencies
pip install pyg_lib torch_scatter torch_sparse torch_cluster torch_spline_conv -f https://data.pyg.org/whl/torch-2.0.0+cu118.html

check your torch & cuda version before you execute the command above

python -c "import torch; print(torch.__version__)"
python -c "import torch; print(torch.version.cuda)"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch_timeseries-0.0.1.tar.gz (7.9 kB view details)

Uploaded Source

Built Distribution

torch_timeseries-0.0.1-py3-none-any.whl (10.5 kB view details)

Uploaded Python 3

File details

Details for the file torch_timeseries-0.0.1.tar.gz.

File metadata

  • Download URL: torch_timeseries-0.0.1.tar.gz
  • Upload date:
  • Size: 7.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.8.16

File hashes

Hashes for torch_timeseries-0.0.1.tar.gz
Algorithm Hash digest
SHA256 0409c19a7d56ba17752b15112ef63e741a9fdae9fdcf17e7be02db27eb496b16
MD5 61b9e6c59028901b93d047e95cf96431
BLAKE2b-256 b0a2029bc3aa47ade87f571ced4ee05014a179e86759e690b4746fa061d7d582

See more details on using hashes here.

File details

Details for the file torch_timeseries-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for torch_timeseries-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 52b56022e55c18c2a38b2fcb85153a89f7b8f3a8aea94e44254a958351e23558
MD5 b5af3d974d8d2c9d4a95ab56d8966d58
BLAKE2b-256 02d019bbf85ca95c3182197d02722c0c23bfb06a606c1a141dcfa541f358964e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page