A library of helpers to train, evaluate and visualize deep nets with PyTorch.
Project description
Readme
A library of helpers for PyTorch.
Michaël Gharbi <mgharbi@adobe.com>
Installation
From pip: pip install torch-tools
From source: python setup.py install
Documentation
The documentation webpage can be found here https://torch-tools.readthedocs.io/en/latest/
Demo
For a simple demo, look at the MNIST example in examples/train_mnist.py:
python examples/train_mnist.py data out
Contributors
Dima Smirnov implemented the tensorboard hooks and callbacks.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torch-tools-0.0.14.tar.gz
(22.7 kB
view details)
Built Distribution
File details
Details for the file torch-tools-0.0.14.tar.gz
.
File metadata
- Download URL: torch-tools-0.0.14.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9d80dbd18429b44e8f4369ee7eb5eabb3ab483c35b881a0e799ff189eac6021a |
|
MD5 | 261f0f502f7e46b7d24c2ad192da86c9 |
|
BLAKE2b-256 | 4186a7de3baee42a0ef3ded1e970a4bd8c953266ce1375e51111fabbc5d64257 |
File details
Details for the file torch_tools-0.0.14-py3-none-any.whl
.
File metadata
- Download URL: torch_tools-0.0.14-py3-none-any.whl
- Upload date:
- Size: 28.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbdd5a74a66ea08e07b2ad4fad2b9c4300676d3fed20c6650877ee9de8785e39 |
|
MD5 | d39159aa927fa445d7778a8c066fa4af |
|
BLAKE2b-256 | 210556a2908695939c86c881b5a697fb555b6ebd766f8e45fac492ccadb6487e |