A library of helpers to train, evaluate and visualize deep nets with PyTorch.
Project description
Readme
A library of helpers for PyTorch.
Michaël Gharbi <mgharbi@adobe.com>
Installation
From pip: pip install torch-tools
From source: python setup.py install
Documentation
The documentation webpage can be found here https://torch-tools.readthedocs.io/en/latest/
Demo
For a simple demo, look at the MNIST example in examples/train_mnist.py:
python examples/train_mnist.py data out
Contributors
Dima Smirnov implemented the tensorboard hooks and callbacks.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torch-tools-0.0.16.tar.gz
(22.7 kB
view details)
Built Distribution
File details
Details for the file torch-tools-0.0.16.tar.gz
.
File metadata
- Download URL: torch-tools-0.0.16.tar.gz
- Upload date:
- Size: 22.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a28348fe3ee4d8157f621ee0d1624b93848e691fff689afcf44f77b1c14a7495 |
|
MD5 | 245c039f945c05588f75d429a3b7bba0 |
|
BLAKE2b-256 | c60f9ec4e2052ca60d83a5c06c3f52031a672ccca7d4cc5d9090e1c36f571a6d |
File details
Details for the file torch_tools-0.0.16-py3-none-any.whl
.
File metadata
- Download URL: torch_tools-0.0.16-py3-none-any.whl
- Upload date:
- Size: 28.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1434cb7f33353921e75dca3e1d4761029406839cecb53e1d67839264e5b295ca |
|
MD5 | 52f0ea61cb3856dd3fec3b29dd7fd6f2 |
|
BLAKE2b-256 | e75171b996a727cceed427d5c9824c2e489335ea20ad15598ad2334717206f97 |