Skip to main content

A simple package that wraps PyTorch models conversion to ONNX and TensorRT

Project description

Convert PyTorch models to ONNX and then to TensorRT

Build Status

Requirements

  1. Python 3.6 or 3.8
  2. PyTorch (1.9 or higher is required)
  3. TensorRT (tested with 8.0)
  4. The rest of the requirements are listed in requirements.txt and can be installed automatically via pip installation

The python version restriction is caused by pytorch-quantization package required for the conversion of quantised models

Alternatively, you can skip installation of the requirements and use this docker container

Installation

From pypi

The package can now be installed from pypi using command:

pip3 install torch2onnx2trt==0.1.1
From source

There is setup.py file in the repo, so the installation is pretty straightforward

git clone https://github.com/ucLh/torch2onnx2trt.git
cd torch2onnx2trt
pip3 install -e ./

Usage

import torch
from torch2onnx2trt import convert_torch2onnx, convert_onnx2trt
# Load your pretrained model
pretrained_model = YourModelClass()
ckpt = torch.load('ckpt.pth')
pretrained_model.load_state_dict(ckpt['state_dict'])
# You need to pass your model with loaded weights, an output path for onnx model
# and desired input shape to convert_torch2onnx function
convert_torch2onnx(pretrained_model, 'effnetb0_unet_gray_2grass_iou55.onnx', (1, 3, 640, 1280))
# convert_onnx2trt expects a path to onnx model and an output path for resulting
# TensorRT .bin model
convert_onnx2trt('../effnetb0_unet_gray_2grass_iou55.onnx', '../effnetb0_unet_gray_2grass_iou55.bin')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torch2onnx2trt-0.1.2.tar.gz (6.1 kB view details)

Uploaded Source

Built Distribution

torch2onnx2trt-0.1.2-py3-none-any.whl (6.7 kB view details)

Uploaded Python 3

File details

Details for the file torch2onnx2trt-0.1.2.tar.gz.

File metadata

  • Download URL: torch2onnx2trt-0.1.2.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for torch2onnx2trt-0.1.2.tar.gz
Algorithm Hash digest
SHA256 d8a9ed3fafcdda83f6e4bc99ed3f56745f477c8b5f9a99b4e28494878e5f25dd
MD5 ed831b08020f7782d958786ee9af1470
BLAKE2b-256 6687c78afdd25ca89137cfd78cbc55724dbc660a3cba3af9c724f89c3a19666d

See more details on using hashes here.

File details

Details for the file torch2onnx2trt-0.1.2-py3-none-any.whl.

File metadata

  • Download URL: torch2onnx2trt-0.1.2-py3-none-any.whl
  • Upload date:
  • Size: 6.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.8.10

File hashes

Hashes for torch2onnx2trt-0.1.2-py3-none-any.whl
Algorithm Hash digest
SHA256 6f00b63bb35704bd63ed46723e4fbb7d23bda616ad2f65542c7e7535a8b16773
MD5 711d682c66e5b3fad6ad47631d21d920
BLAKE2b-256 79e93d154fc76bd965394f9b607ba9551dbfa2eb22134c73229a844e9392a2ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page