Skip to main content

A Pandas inspired, Arrow compatible, Velox supported dataframe library for PyTorch

Project description

The author of this package has not provided a project description

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torcharrow-0.0.4.dev20220620-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

torcharrow-0.0.4.dev20220620-cp310-cp310-macosx_10_15_universal2.whl (23.7 MB view details)

Uploaded CPython 3.10 macOS 10.15+ universal2 (ARM64, x86-64)

torcharrow-0.0.4.dev20220620-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

torcharrow-0.0.4.dev20220620-cp39-cp39-macosx_10_15_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.9 macOS 10.15+ x86-64

torcharrow-0.0.4.dev20220620-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

torcharrow-0.0.4.dev20220620-cp38-cp38-macosx_10_15_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.8 macOS 10.15+ x86-64

torcharrow-0.0.4.dev20220620-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

torcharrow-0.0.4.dev20220620-cp37-cp37m-macosx_10_15_x86_64.whl (23.7 MB view details)

Uploaded CPython 3.7m macOS 10.15+ x86-64

File details

Details for the file torcharrow-0.0.4.dev20220620-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f5b9597ef3e05a40cf6bbd1c1481fa06ae2d3993cc1e96998416b3f4e954a4c
MD5 9e70f0ffebc437e7f165bc45333011db
BLAKE2b-256 318ee8005221d40af19dfeadd15675e84752369d267ecbab89af1a79ce05b2f1

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp310-cp310-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp310-cp310-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 284689cf71b1e57a257c56ea1345b449cfaf47080b3fd5b0160ab62a47a0392f
MD5 be84cab1d3e3826d330549099a7e2aab
BLAKE2b-256 cc434ddef9a878ac5f615b116c50ff18566f229e934086774885c367bd8e0909

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: torcharrow-0.0.4.dev20220620-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71094aa738ef8c6ba94d0f09d1ed3a8771067dd718ec0cd5764a3640b8b54ac0
MD5 d1482bffc1803e7fdae72012ffa20cd8
BLAKE2b-256 56e5d427c81de1bbe20f5bb5f7552d0d2a5024b678ed28e11c1d262d8687433c

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 90a83734dc00d3c66107faae27a96f9b4c0273df0220acc582c448c3dab4c8ec
MD5 a6fcbc9e3ab39fb9ab213a6562b52346
BLAKE2b-256 c8a8e6f6a657c09bc113ad76e332d2c8639000c9a48d1115bdffcaa0ce92493c

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: torcharrow-0.0.4.dev20220620-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f51743c24be3411cea9d4ca09191578081b30ed13d9ad142f6d93099f9a8361b
MD5 42d2868a2553d6e418c5f05eac122732
BLAKE2b-256 c711340c3e97d8c0e0f49c914fccf3d9e8183a8af8288a14c616236355d9e99f

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0c7ab038bcbf3cf1ff278fbc3c917bd7b73d18000bb3ce80399c84391caad474
MD5 c64b4fa23aab18d6390ab2af9d6db7b7
BLAKE2b-256 644d9dc2d4565091f462eb925156816387217b284d613181888e359ea6cff6ab

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

  • Download URL: torcharrow-0.0.4.dev20220620-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
  • Upload date:
  • Size: 13.8 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.17+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.3 readme-renderer/34.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.5 CPython/3.6.8

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bc56785de6771171d3c06b3cae5fdbd3a77bbd4e25aa2b63d7c28472ce862500
MD5 bae2ee5a430757e5dc8250c863f139f2
BLAKE2b-256 dc870718bde9f43e1af8490b00082dd66bae78caf4a94a50ef6cdc7415d1577e

See more details on using hashes here.

File details

Details for the file torcharrow-0.0.4.dev20220620-cp37-cp37m-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for torcharrow-0.0.4.dev20220620-cp37-cp37m-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 841a46448ec71f29718f00dbe9fb462b24d4cf2e947748ba4a37aea0ba60be2d
MD5 ff88c628f6d8be8df2dcda0cd117ea6e
BLAKE2b-256 8b80f75a1cf6ec143881181ef75308a9a0711c73741a257f7b4590c62daf63a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page