Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-B��lair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.5.1-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.5.1-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.5.1-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.5.1-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.5.1-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.5.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.5.1-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.5.1-cp310-cp310-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10

torchaudio-2.5.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.5.1-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.5.1-cp39-cp39-manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9

torchaudio-2.5.1-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.5.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.5.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ec8f12d6be12aed248a0d65a76c7bb341ee5eef969fe2e9dc3154c7cfba1bdf4
MD5 cbcb65ac96b359622a1ad0ebdb9d3930
BLAKE2b-256 99a14220b73ba6e083229099892d9126e01836afe96cf7e2fbfe60b327506f49

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6bb65416405f40e00b20701257c16e7493bfdd7188e02e87cc5b389c31c10c2c
MD5 bc9012b726ce88c7f9fe959704c2ca1f
BLAKE2b-256 1c74a27c6d0d4c4fad90462f08e99222d3557f118beb8fb560b87d607a727a0a

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9c8fb06fbd8d2016e7b7caf15a3231867c792a2e3b0f2f8f9013633e9c2ce412
MD5 189bc918343203ecf27e317173cd66ed
BLAKE2b-256 341c345d11bf492a1414dced70a9572ff1eb2c73013578d24fb4d728a91a09d1

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f1cbfdfd1bbdfbe7289d47a74f36ff6c5d87c3205606202fef5a7fb693f61cf0
MD5 07075897a6f48347c5b3d761b044c852
BLAKE2b-256 03ab151037a41e2cf4a5d489dfe5e7196b755e0fd83958d5ca7ad8ed85afcb1c

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cba8ccab1bff0496ccdc71ebbdcd31d0f7bf97ff3c46276425ff86460f6f8967
MD5 1ec68fe7463de816c85e52cf417da5b2
BLAKE2b-256 326a019e426ab4af487167182a19e115fc03234fe28bc30e22cb0e1a9958f70e

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ba24769a72bd686903feaf1040c895d710af2ffbcd25ee7a9794ee285561b26
MD5 71836a67a4b0bffb759ff47624395433
BLAKE2b-256 0c0e89294062dbca27ed8bc4a89d9ceea0bd64b45ebc005e0306871b3f55bb31

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7af3f7f92fd33bc9f036a60cdeda4cbeb6bccebd18eae89776dd1e8ed042672e
MD5 6ce7f33946d5ae3d62794e4d8303c718
BLAKE2b-256 41330f21b15f8e231bb55578f6b32e8c18675585b7bf97cb0aee96b1591e4193

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7005354aa7dda9ef908e13c2566ee1fe0bd6d7f5bae0583b5e53016cd229fc34
MD5 d06ef2744abb7eec2a9d383cfa5b24fb
BLAKE2b-256 6a971780e3dd8733da30ff1051b8cbd8006e4824b76028558a58c31e790c09cd

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4aead2d6b32426d0e657e243f6f5146f8d400bc8db9fe8a8000254baeec1202d
MD5 e870f727a0e36af9daae1ca71ba625fc
BLAKE2b-256 fba8113d41cfab3220ded1f9a5910e6b3c217bf3a6896925dca8cd13df0c23dc

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9b3872c5dd5080be6322908d62365581a1dd9250e3dd6d47bab3f5b0854a5d1f
MD5 c2a891abece5b67b15fb84c941276bb4
BLAKE2b-256 c206b122f0475ca97abdc8daf637c0f62778893aa40f91e988a7baef8eedf8c6

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 abacbec3b6d695cf99ada8b1db55db933181c8ff7d283e246e2bbefdde674235
MD5 a8972059dce3cbddd8db96083beac56a
BLAKE2b-256 e32c3db92d48e2e4a0bd7398ecb39fb731ad876c7cd6ce6c365630865654d253

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 901291d770aeeb1f51920bb5aa73ff82e9b7f26354a3c7b90d80ff0b4e9a5044
MD5 7ed4f1a56bdf5d964520cea0a5890dcc
BLAKE2b-256 b3db246930ba5933a9f6ce8e2cca7086924487286a0bf7d8d28aeb354e8b0504

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0be6d6f5127b17f9f1ac33fb02c8f1127bfea955de630c5cab6eb9daaef4db6d
MD5 52570fb7e7da870d9aeee53c302865d6
BLAKE2b-256 8a7b30677c86a054cab96274362c501c274ff8bd5884281b1841dc73146a7ec2

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d29349944955eb061e774fe4d9eea4681c5bc9ff42ea39a877f8f14de1e4ed00
MD5 05df305e5b259fbef1d260ca12bdfece
BLAKE2b-256 6dfc6253fa7f48ce68eb0f64cb200b5944389cb6b4cf20f69f3b14cf23554747

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f2f0a4fa19137cad247087dcf4b85c56860f924c3ca4a89679299cf0e002ee33
MD5 631bc9811399d8b2a7e339c5bd785694
BLAKE2b-256 4f7e72d930d1093790182ca6a2b3a90b6f6750a0432444efc53569cfd90f57e7

See more details on using hashes here.

File details

Details for the file torchaudio-2.5.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.5.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a40a0e4b238564a19bf138c64d593c7b52d97c8737843d85d6ca09216241ae66
MD5 a357b6e950d0f61d772295581c361226
BLAKE2b-256 13a043a7b3bd4f19bb2ca46e44aee83cba6cb1450f3126d9615f30ac51db24ec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page