Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.1.0-cp311-cp311-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.1.0-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.1.0-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.1.0-cp311-cp311-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.1.0-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.1.0-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.1.0-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.1.0-cp310-cp310-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.1.0-cp39-cp39-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.1.0-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.1.0-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.1.0-cp39-cp39-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.1.0-cp38-cp38-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.1.0-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.1.0-cp38-cp38-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.1.0-cp38-cp38-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 eddd74545d73a74c424936fdc98d817b139be994185eebf60c7663f578118a47
MD5 388b88195c5c7b7a5e3af185d4c56f46
BLAKE2b-256 1130715101782513f94c834ebe3afb9a29b0fae1121f64963db9d39fb80da53e

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 328e5f36830e886c2b6f2a35868858aa464b9c1aae3c87d70b2b4fac3721b822
MD5 ee7e9ee7557237aaf77934ed9fb8b8d1
BLAKE2b-256 d761787ba4b4bc939d4480110794c76fb3d54c727d9fde6ae4198674c00edffc

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 b2cd0873d24645b67c7e269c8a24bd160b8214874207ba90fbc133a482e85b6e
MD5 59f8333a5f3b6033c2f9817a54bc3a8d
BLAKE2b-256 8efb32bebfa0aea36a2ee8f9cfab2ac023176a438163638587665616f13004d2

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc97182abab2065d8bbf56f3732883e40acfcfec38f2581c97710b1fca93c4a7
MD5 a12232fe9e3f54fb991bd84a65554223
BLAKE2b-256 b1fc9c2ac53ee9f28775db67c0b7b7b2d47dc1c9e5b70bc1fb5d57786f509f51

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8bd1eef53c353cea7eb6cbe1013cbd9e51c48987e19d06bdbb29a22846b8c6b1
MD5 868e16e67d0494dd86d18f93ab87b0f5
BLAKE2b-256 38f83ec994390d2ec2fc250425eefbb328f3e6a073b42e592ed908e8af3807d7

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3629b358af5df25f9b018e3aba09a84c59c809712d7dfe9e31a4145d0092a1df
MD5 d2ed772aa4d532a83e9a0f270f5a780b
BLAKE2b-256 6bba0e26883fd90f280452bed7edc7906ef9253255f395702751f65fa02afb5c

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 010f63fe766787e058989ffadd793daadd946ce1de903be171087938cdbdc1d7
MD5 c87ab90e1bb92e32d31ebf6888bfeda7
BLAKE2b-256 52bd7ce9a83da910a3240cd444f19c7810dece973ebc18c3704ce33b497f6ac2

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1602cafb47dd04a61a9b0d77f79721979dacbc844de73174b84467992237c9b2
MD5 1252cef28961ac88f8b6b2de9703a17f
BLAKE2b-256 31523f76cf4364322db27ea1d6b32a7864b2d7a78a2c240d975b25783e262035

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cd6f29c78358b632ff7123929e5358dbdf0505849811b57e7108cbd2af42bb44
MD5 4c56b6b4ae6c918e17fb77de87c16e2a
BLAKE2b-256 73e9364deebbd1ba9861b8d239d27066bf68b077254224014b19e549ded18b37

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 445eba044d70e292acab2a67763ee682af8c776d2d0ca671cdbe43ba396422a3
MD5 f07338c9962baca61b24926f17d68ae7
BLAKE2b-256 03ae535192c2b9c53290d44d89d1267083c79663b5cf2fbfe13ccc28709d80d4

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 34f66c7171330e3213bf7d76a9efda51067857411aac60d70570239c9ed8c56d
MD5 2c7777abbf5ee89a457b8ae5279166d9
BLAKE2b-256 1794865643100a22df60aa1d328173a296a0e84a4c4e826f32f99cd10fb5eca1

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 653016d59401e1f84412e8b76960866f4aeb8a403e3a4d04d5c9a55b67de825b
MD5 7592fb25b8815b4e21a5a8ef46a46064
BLAKE2b-256 8dbe2dd5ad84f4184f0d8c58a8d9ac77e344645484977d711499387849aabc37

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 08818dc390fb398974b7d68ec9fafb16345b3366fa884139a04a062e9cb60684
MD5 c96235df0f3df4b5a14090f1fcc5466c
BLAKE2b-256 a19b9df4799fd63ac68d872fe4b00977d135bd082c692ebcc76f68ede16de355

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ed92f59d8863578298b3f238cfc6c4c74251598c9e4642246731ba0b8043a033
MD5 964614a4db02d942f88b711a736e9d85
BLAKE2b-256 9ee2812b1a2a5ec34fe7c0a5cf11b4e62709172fd71783cbc8b7875e3051e8a5

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 349f7b1c28724445fc460f2ec9f60631a5a335dfaebad36994bd11ce22056b1e
MD5 53133f2511483991070869e2a3fc2c0c
BLAKE2b-256 ee39b8bed16f4b5193ce747fe507ef2355daba12f8fca9b866a48091f44adea4

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 e91f31e17e2c341a39143197aa552abc55066c178065fa2524b27630e39505cc
MD5 adc5bc5cf70fdc46ff9c580c753e952f
BLAKE2b-256 8e3532118119398e613571fe51f0532cabae093342c613b4ea410517603a5a8e

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a337db1d5f134d2168870ea0bc026107af0fe1e80ad7d93dee002daae5fe363
MD5 ca7528f424fd7307443c77f92fa1b4f0
BLAKE2b-256 50d0cce702fa0790851a7c182ed510aff8ce6bed26f57202e6a1eda8f41bd38c

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1cce2133f7b9f813ff146dffccfdb616b73932cec2fc69aa3a4189b8a8b17f8d
MD5 bd507f10e3622b67a0f9e4a88afb5aad
BLAKE2b-256 5ec5480aaa810da7ba5feb1300bf490417f100bf4ac9c7f9d8368f3f2e198855

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 96a635120c6dd35926aafe1f20bbaf5325c775813082832dde6df390cc8be90e
MD5 6d5fbf5edf2b369af9ff35b471134500
BLAKE2b-256 c760bd55a4f99bc40b5a5e0751d389614298382b28bf6a8fb81653cd0a4071e7

See more details on using hashes here.

File details

Details for the file torchaudio-2.1.0-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.1.0-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6dd5933188154cb8bd9e634c7812186c1df382a6b5d7be471e894fb488a6757e
MD5 4b4777a9a8d33a800eb995f2d99461ce
BLAKE2b-256 f81f8d8dff9dc9fade6b842721c0521f98c745dd8904624ad0e061ce81c7b1dc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page