Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.2.2-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.2.2-cp312-cp312-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12

torchaudio-2.2.2-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

torchaudio-2.2.2-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.2.2-cp311-cp311-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11

torchaudio-2.2.2-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.2.2-cp311-cp311-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

torchaudio-2.2.2-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.2.2-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.2.2-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.2.2-cp310-cp310-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

torchaudio-2.2.2-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.2.2-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.2-cp39-cp39-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9

torchaudio-2.2.2-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.2.2-cp39-cp39-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

torchaudio-2.2.2-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.2.2-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.2-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.2.2-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

torchaudio-2.2.2-cp38-cp38-macosx_10_13_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8 macOS 10.13+ x86-64

File details

Details for the file torchaudio-2.2.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 468e46c1dcf4a8c5d5ef68dae934a67a83f544034d1be7322cc58f721ff0e487
MD5 1faa4df4a83fc7a821450c354abae8d2
BLAKE2b-256 13472a86273d9b04f0e328ddc79269e1a91d2716ce9f6acc0ef4250d0421e858

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9db0338bd3a78e60c745b6b5c366e4c9b88eb210e1fdd617d3f62f1a0b859ea4
MD5 5be97fa9d2e54c44989dfdd791550d60
BLAKE2b-256 03207562d430b504e2d40cd872d4bf9670d01200428af6c3bf92d4fa0066e01e

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2b20b3b2f0d71b626cfa651cb290010f0cae6c2f6d5cb33f39ce34f99877fd9d
MD5 1024f480988ef62db2b3a6d4ae67fa81
BLAKE2b-256 aad558b5f13dd495e3b8f8d1cd92a110a37e8f00a0c6793081f40e874421608f

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8fc7aac4f4b24e9b3fa03a2a7933363f7e5c484835ccb2a20cf164a0e5e715b7
MD5 c9ec9d8755ed14949ec9a60cfe4c86fd
BLAKE2b-256 1372454c6fe5898316e0a3377e9eadd4041ab88ecb7ff06f7008a8e997f9d6ae

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 da3cc523696166ea525d2b3377d789da5388f36d94a20a324b09df00f1c43458
MD5 211a6ce0c730d4557d05c1301262f790
BLAKE2b-256 0539fcc68b1f848a38b57446b624be42db66fec3587972941a5b86fc19b8bd45

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 45ff277ced4a3f8cdc0474df16ebfb177633337040e5ac82d1fd46e4e6b57f85
MD5 5967245972e24095c9e87612697ab161
BLAKE2b-256 5bb8c2eb1dea20b703ac43e41f95c29998b040bfe7e5ad50acd21ee4fb13078e

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a03a48b6d55d17d48f419a7f1d0d4018d48a04c76585c16a9b5e69281f92f94
MD5 d26251f3719cb26c791db180c5736dae
BLAKE2b-256 9ebf9ac0880baa859b1377107fc9fed4ebe69613735aec15c543dd79242098f6

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 02e3dc45408d83371d9832ee4520f13f887f5da4cd0931ebde6aaf2a1723d340
MD5 5dd2f2f9a157e9459387822c42e66a7a
BLAKE2b-256 c55cea155afaabd0b9bd46bc3aef786f387b6285c02468dcef693f68571f5af5

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01482fc85117f85ee44f8aa8e9c11b1c022326173e0748789ed42b219102937f
MD5 36788592da44516d40ad5a380be71f23
BLAKE2b-256 3f6f79fe2cb91908b3d3a57b8ef68911123f797c0fb05a268a6da86cc5a67484

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f1a81a518a3e86c004125eb891fc433ce8fb2343295b5d612d0f37b24e131efd
MD5 90b6b11956e5be22b76260658088b1fa
BLAKE2b-256 57c480cc3315dd1ca706643b78f894901d4d888ffe376a5e401f73d9db61071e

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad5c6ef0d8fac69221d02fd384b07373f59605d7a09f20c6fe67132c6574ece2
MD5 cc1218c3328501fa3307c8e962e63ccd
BLAKE2b-256 90821d9b23c7f8267b881d3839f7842fca62da7398e3fc31d502121e81629412

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b0f38e7d3548914d78aafc27ff00f7701b1a50bfcddc58965f545fc92ccd4a66
MD5 944e30f799efc5812608e8e62656dfa8
BLAKE2b-256 931afece7437e5e8e8d0beb02639fd0f08da6b8d2080ef02685069c096fbc1a3

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f05d14f6cd0bc3498de19eb1b87420c06895911acf7eca08da37a21a4d42dbbe
MD5 855f6412009c719a1289c5d1a6e3930e
BLAKE2b-256 73ce75bb2a9340a2a8d6fd61fcd1e6e386a75ba2a0fb72a0f1ded18c2b1c4bd1

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a520e14ea0ba89d9dc27922eb4609f9eac5c01c279830e0f216b9c9e017d438b
MD5 f411692a0ca717c3b5623cfaaf0ed90f
BLAKE2b-256 78ecdb37472480a4bd541ca6229b55add2f166dfe5a1c5491e62cb9dbaf7a8be

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b1d58201d108e85db3e35b84319f33884f61f327c38ead86913218c8c1acc3dd
MD5 2d4307e6a24e31bef2d1ead3f0a0efc7
BLAKE2b-256 7670ca793994d37815070f6b53932b71822f66cfb3e197e6937426815998221e

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2da5a53d7fb3f1e83d552c06ad143338a3ab12f517ccdf7e107592dbd51deb83
MD5 0131864e0ed4e48bf7b4a860ac16731e
BLAKE2b-256 3eea0dc28b1addd2211c3f98b3c41c4428f07387b20b5fe95fad20c44e8ff384

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 723f4e57b5d0c120357ca60cd55b4e6cfac845bc0ecccb4b417a44aa4ebc526b
MD5 56430c6c8383becc779f7f8e4610042d
BLAKE2b-256 103bac7908dd6f5fd6d7bc1bda81544d91e17d0913bad948051fb02e3d9a0599

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0ee438a5854874ce6e2fd89cae7ea60977f68a82b851719dddb3f7779c9e85ab
MD5 61ed9022b5ea23433790efe4035465f0
BLAKE2b-256 02c76d01b9bb0dd31538ab02b86c4b467ee48ef1e3e6408436a3396762b27857

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b78a84a189bf3da4b966375cebdecc584a4dc5f60e0bde721d73401ed5cad45
MD5 5bb9a0590e34dd6aabf07d7333e2b01d
BLAKE2b-256 4a813d048a4866762bf7f0294bcf3ec127d2c8a090d2c469a5830ab96ba2364e

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 db70b13a871a49487bd9042bf04b12f74aed77b1a87d2fbeb68d09d9b64bc528
MD5 af91131df8e3f548751be13990672fca
BLAKE2b-256 217f4c67bd7555d4b3e09f5ec7866d2336184d4182f1395cfe89739962b93e5d

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 de887ac20208ad50786c22c82a3da641376c5e01d1c2ac6dafbccd6ee3d30c93
MD5 1ed845c60d7926f155509c5416a615a3
BLAKE2b-256 49294a37ce6d73b80d44d63c8dc35441bb2511d47789d1e9a7a9e08a3cd2b765

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4f756a6e667dd8841bf21a07ead3efedaa7a27d55852779c266f6f2a1064c994
MD5 a01ff7ad8c68a65e2a3e34cbb56a2c16
BLAKE2b-256 7785df875dfcbe94f613e25a93a285ea7bd61862ea420f5202ff0c73b983c409

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 53cf1089ac8082d626627e1a7e5bfd82f879f7d8129a36d7360243338fd0dfb3
MD5 5a8a798338819a60c2c68e4108014390
BLAKE2b-256 7613f3ce599fd30de812963a8766461da5808492a4a43451f99ae284f91f6107

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b3b8abe26b067e9c4a6e3dba156b91d7a85247e88dda70b7c43859f55b978ddc
MD5 caee212f4b45e2943c26e7db6e52e488
BLAKE2b-256 1b979e2d975feb6ca15e08313826dfbadb303ce594ce7b7a869f108dc8c9b36c

See more details on using hashes here.

File details

Details for the file torchaudio-2.2.2-cp38-cp38-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.2.2-cp38-cp38-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8ce4df065a949911d2b6782aa4c13687efadea23ffc7c7a6f15f7e7ae5c89524
MD5 58fcd0794626656bbae54ce3b251d4ff
BLAKE2b-256 ffb687316feb58466fe9683f91a3221f7b024e707c2365be23bd60c626067c4c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page