Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.3.0-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.3.0-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.3.0-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.3.0-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.3.0-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.3.0-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.3.0-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.3.0-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.3.0-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.3.0-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.3.0-cp39-cp39-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9

torchaudio-2.3.0-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.3.0-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.3.0-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.3.0-cp38-cp38-manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8

torchaudio-2.3.0-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.3.0-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.3.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6c1f538018b85d7766835d042e555de2f096f7a69bba6b16031bf42a914dd9e1
MD5 463a6685e038d0f10d171cff74f84870
BLAKE2b-256 f70634addade5c69063d89d67ff810fd6197c28f93d9cf089c51d198562827b8

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 668a8b694e5522cff28cd5e02d01aa1b75ce940aa9fb40480892bdc623b1735d
MD5 8b85f15e8bd2ec22e26dbf15e1a783eb
BLAKE2b-256 9859c153039427aaeaa398e790e776f43b3341f547782893416bf006e580ca65

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 fb3f52ed1d63b272c240d9bf051705312cb172212051b8a6a2f64d42e3cc1633
MD5 4682f1ede266a1e793b312e511950ff1
BLAKE2b-256 40d49eac54931e5b7b45eb80212f0aa5cb103826f9ef4a66079fbcfd10ee8e4e

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 535144a2fbba95fbb3b883224ffcf44788e4cecbabbe49c4a1ae3e7a74f71485
MD5 4916f078bb029f7bddddcdc5e3b1c1ea
BLAKE2b-256 77898f5382f614072e42bdd0e88ada0eef7b08c831b02c9138f91d3c325ee1c5

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 04bc960cf1aef3b469b095a432a25496bc28197850fc2d90b7b52d6b5255487b
MD5 25172820b7187406c2152e964f7ba7ad
BLAKE2b-256 5d358100a33b616292662de330b2cca2c121d798aece4dad59571156b8cffd33

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 61edb02ae9c0efea4399f9c1f899601136b24f35d430548284ea8eaf6ccbe3be
MD5 f613d2545fe26417d476e28400f493e9
BLAKE2b-256 aca724b7245c06ad36200c3ca034a8820fb2cca43946b4f9ed27331d59b68600

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8f2e0a28740bb0ee66369f92c811f33c0a47e6fcfc2de9cee89746472d713906
MD5 ed22023603c003812d6c47284cc34b1f
BLAKE2b-256 519e3b31f93a56d32f10db44bad3236a834c9e57fab66a9c6e5149ea666bb927

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 341ca3048ce6edcc731519b30187f0b13acb245c4efe16f925f69f9d533546e1
MD5 d6f094d6fc9a600909197a10d2e0e6d6
BLAKE2b-256 51c82034c6a6b203fe79c9df8d8e018bfac989cd718be4b0c36940e1fc691fd0

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b4cc9cef5c98ed37e9405c4e0b0e6413bc101f3f49d45dc4f1d4e927757fe41e
MD5 7ff1b31dfd0fada90e0a55f5bdc4a51f
BLAKE2b-256 07488ee354f84a48d5102d8f06ce6c4034a64ebd2c1d41fee4475ee201d21e11

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e5bb50b7a4874ed97086c9e516dd90b103d954edcb5ed4b36f4fc22c4000a5a7
MD5 65e63ed96be03a5e19855a6a9d2d9dac
BLAKE2b-256 59560ffccbb1d476797aa39cb6592e7b61514d87dbe093987570532ab8059646

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 73fedb2c631e01fa10feaac308540b836aefe758e55ca3ee026335e5d01e8e30
MD5 d533bddea6b3cbaf660b3eab61015072
BLAKE2b-256 f535bc3d7f953a0ad20511039f414c3f9c813b32c108b55fc1be5349a36ead6b

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 342108da83aa19a457c9a128b1206fadb603753b51cca022b9f585aac2f4754c
MD5 880bc432a30241f54a090b4ae5ff393b
BLAKE2b-256 b9f1438ace9e1a8d3b4e0b84f02d7c84be5210f119f3e816cbeff42e2159b654

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6cd6d45cf8a45c89953e35434d9a461feb418e51e760adafc606a903dcbb9bd5
MD5 4167f980f93635736f7e8dbb1eada59b
BLAKE2b-256 25e95c368aeb7beee1689c18811452305a845f71fc3c461b26d0bc6ebf2b3ec9

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d243bb8a1ee263c2cdafb9feed1569c3742d8135731e8f7818de12f4e0c83e28
MD5 51cbec101f3b0589f216ad00a8ad2186
BLAKE2b-256 d21bf1ce30c380e3b1264cad8e7ebd810c7b968a94c51667114b93af989ce46b

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c5e63cc2dbf179088b6cdfd21ecdbb943aa003c780075aa440162f231ee72db2
MD5 ef4cd39adda0b04272f588cf07897a6f
BLAKE2b-256 544f38ad85e812a293f60b59e528c9bfc70e96b8d21c0ec6d568273eb1f80e3b

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f4b933776f20a36af5ddc57968fcb3da34dd03881db8d6760f3e1176803b9cf8
MD5 12a58c47358b30f42dbf195e25c289e2
BLAKE2b-256 9a4ded4515a737bb5f106d2f4cdc2edec1a70f62367121a8ebaf6f17564c0cd2

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a3cbb230e2bb38ad1a1dd74aea242a154a9f76ab819d9c058b2c5074a9f5d7d2
MD5 7940a3965c36021d61ed25eb55b2ae0a
BLAKE2b-256 3206184667aa64a36ca8a7c5f0c9b81f36b760417a6e15512abd893e635c9e1f

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed1866f508dc689c4f682d330b2ed4c83108d35865e4fb89431819364d8ad9ed
MD5 a66eb08bbfffeb773fe9a63b0184e4d1
BLAKE2b-256 8f3dc5ddf1385a0ec893f6ed962886a0a7f1f40ecbc82fe409b9ca9b52429214

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 21bb6d1b384fc8895133f01489133d575d4a715cd81734b89651fb0264bd8b80
MD5 044a6d8e9dbf1dd36366062f77abde56
BLAKE2b-256 d9b191b6dd40186ba718419786d0c1f4e4a0216dde67ed6b114cea85cbaf1317

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ba93265455dc363385e98c0cfcaeb586b7401af8a2c824811ee1466134a4f30
MD5 0f55a8c5244acee1f01fa3f701ad8403
BLAKE2b-256 a8c8cc38f1d25ce7b4df17b22fbd762274ad2880d9fb4c0cda924538c96f21ff

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page