Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.3.1-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.3.1-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.3.1-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.3.1-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.3.1-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.3.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.3.1-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.3.1-cp310-cp310-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10

torchaudio-2.3.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.3.1-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.3.1-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.3.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.3.1-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.3.1-cp38-cp38-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8

torchaudio-2.3.1-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.3.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 25bd1137e47de96b48ef0dc4865bc620a0b759e44c009c7e78e92d7bfdf257ba
MD5 7e4720f29d7af859b478885b62d03e30
BLAKE2b-256 22fa23a6456de8b6fbac7026efb9c7163335c57b79437618686149daf2f9be39

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 42af6c7a430e6268f2c028e06078d413912b5ec6efa28a097ebdd3c3c79659df
MD5 b75e8697e0e6d0d5d320a284564c4f84
BLAKE2b-256 533089de93b7082b58c29f2e368a737c613a07d0adbe87505b9592f4c88be718

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 07b72d76fa108ac0f3400a759456ba96bdaa2b8649fd9588cc93295a532b01d9
MD5 e115cee61d4d4f99b0f4fd7c3541dda8
BLAKE2b-256 48b704a96dabea4ffd1cc990b429c36f08316b442f2ea4964bd8b52e28aeb36f

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e36685420a07a176146e9d6e0fa8225198f126e167a00785538f853807e2d43
MD5 ac5a88545cc5e2defe5639c5cd11518c
BLAKE2b-256 4597e584276755305d3a0af0ff280ce7eeafc45855355ae0a6de38b13ac195ac

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 341e33450831146bc4c4cc8191d94484f1acc8bb566c2463a57c4133f792464e
MD5 3c7d3a9fb5bf0ca438d2f87e0035ddde
BLAKE2b-256 7abf5af72c1c4522bcf67df140427120b0e7898b2abc5afa5da917b722983a5b

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c8c727c8341825bd18d91017c4c00f36b53b08f2176cdb9bdcb0def1c450b21d
MD5 011479ba5816356e4a191b4360d95a45
BLAKE2b-256 e78ba883b4359c88d4e77d9301b4aaba6793a5de09a69010f2b56ba47655f49e

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 68815815e09105fe1171f0541681a7ebaf6d5d52b8e095ccde94b8064b107002
MD5 72a5628ece7f5516f8c7cebaccc21fee
BLAKE2b-256 62043acb3673dcc9f493e65798d752841137cfcc14220a8eb4ec8dc202382bcc

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 01984f38398ca5e98ecfbfeafb72ae5b2131d0bb8aa464b5777addb3e4826877
MD5 ac80116f27ee1c80fefb40de6f597d32
BLAKE2b-256 41c351482591d741c0c069f5825fe02d9ae387dc63eef2fe4cea1d1f3b07a623

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 5b1224f944d1a3fc9755bd2876df6824a42c60cf4f32a05426dfdcd9668466da
MD5 50caf19db1839f9d6d81f13f6dc66b56
BLAKE2b-256 f1ac5857e7e99cbd935e1f1e48283832315eeb2a36264e4f356f2db1491253aa

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6b57e773aad72743d50a64a7402a06cb8bdfcc709efc6d8c26429d940e6788e2
MD5 3ac563c97819966a8fb500302fe29938
BLAKE2b-256 d32ab14b5ac15d21d8e9851f63d863a31bbff7481fb526e98de0c2ac66f10243

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 88796183c12631dbc3dca58a74625e2fb6c5c7e50a54649df14239439d874ba6
MD5 a2b7ab5af67a4d8b0f81eba0241e8630
BLAKE2b-256 8e2af33c0f2d9cc51a2f33e13902c47fafac1bad0c3a02077382e869bd9939c2

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f9134b27e5a7f0c1e33382fc0fe278e53695768cb0af02e8d22b5006c74a2ad
MD5 e723fad27c9948926b160c7a7cf08184
BLAKE2b-256 27b9727f98f746d94b52ff490761abe8e8c595e79b284a4e4f157ba36bd74d44

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b7e0758b217e397bf2addfdc2df7c21f7dc34641968597a2a7e279c16e7c6d0b
MD5 4e965d6341020e30b332cce4b5390371
BLAKE2b-256 9d46daefd3d616e2568eec918ff5b05248147f466257af607df44c9aa8e3098e

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e3bca232f820c6a0fa5394424076cc519fae32288e7ff6f6d68bd71794dc354
MD5 184be1c28f80603551269653f9e7f22f
BLAKE2b-256 71365737758d31514d39fcc83afb11147a97a62493eab5e2199160cedbfe5c57

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ae22a402fa862f7c3c177916f1b17482641d96b8bec56937e7df10739f3e3947
MD5 176022417e2b50402dae0a91dcce44ef
BLAKE2b-256 edeeeaa1b54771d74fb8d26feafad74ec46efd5a22f1859339c701f23986e632

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 36e8c0b6532571c27a08a40dae428cd34af225007f15bcd77272643b6266b81d
MD5 4a213e561fae34f32c161f60d88a283a
BLAKE2b-256 ed9fb0ec051a8cecf3963a821a7d978c67bc8e92e9970f95fb7a3879db9dbafa

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d4982f4c520e49628507e968fb29c5db707108a8580b11593f049a932c8f2b98
MD5 5b92540bf19f06e758d335803f8f48e0
BLAKE2b-256 46a6cfa6c4f4461d372ac361b15657076ecf85b63f50864217688e56cb48769f

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fd0f4bbc3fd585fbd7d976a988fe6e783fcb2e0db9d70dac60f40be072c6504
MD5 fc08a3cd0ec7bef241b7a151615b08d7
BLAKE2b-256 9cadfeb2f973a3add44bda59d2f36f17f84560e8616fb09a5f44fb65498765f9

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6f8bc958ce1f24346dabe00d42e816f9b51698c00afe52492914761103e617a9
MD5 d23bd85b94f3a10775cf9387d35e9a64
BLAKE2b-256 f67839cd34c85398630b08f5bf92e11a5bb86c15e102a81f6ae5e375a13cf38c

See more details on using hashes here.

File details

Details for the file torchaudio-2.3.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.3.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce45e05acd544696c6a6f023d4fe8614ade57515799a1103b2418e854838d4a5
MD5 f5f06b84f051b948da79785e5d6b75cd
BLAKE2b-256 15937343496c4446f3bc6967f903eb195e2d34119d28e4693b8a94338376f5d6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page