Skip to main content

An audio package for PyTorch

Project description

torchaudio: an audio library for PyTorch

Documentation Anaconda Badge Anaconda-Server Badge

TorchAudio Logo

The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch operations which makes it easy to use and feel like a natural extension.

Installation

Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.

API Reference

API Reference is located here: http://pytorch.org/audio/main/

Contributing Guidelines

Please refer to CONTRIBUTING.md

Citation

If you find this package useful, please cite as:

@article{yang2021torchaudio,
  title={TorchAudio: Building Blocks for Audio and Speech Processing},
  author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-B��lair and Yangyang Shi},
  journal={arXiv preprint arXiv:2110.15018},
  year={2021}
}
@misc{hwang2023torchaudio,
      title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch}, 
      author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
      year={2023},
      eprint={2310.17864},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

Disclaimer on Datasets

This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.

If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!

Pre-trained Model License

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See the link for additional details.

Other pre-trained models that have different license are noted in documentation. Please checkout the documentation page.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

torchaudio-2.4.1-cp312-cp312-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

torchaudio-2.4.1-cp312-cp312-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12

torchaudio-2.4.1-cp312-cp312-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

torchaudio-2.4.1-cp311-cp311-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

torchaudio-2.4.1-cp311-cp311-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11

torchaudio-2.4.1-cp311-cp311-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

torchaudio-2.4.1-cp310-cp310-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

torchaudio-2.4.1-cp310-cp310-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10

torchaudio-2.4.1-cp310-cp310-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

torchaudio-2.4.1-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

torchaudio-2.4.1-cp39-cp39-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9

torchaudio-2.4.1-cp39-cp39-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

torchaudio-2.4.1-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

torchaudio-2.4.1-cp38-cp38-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8

torchaudio-2.4.1-cp38-cp38-macosx_11_0_arm64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

File details

Details for the file torchaudio-2.4.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d721b186aae7bd8752c9ad95213f5d650926597bb9060728dfe476986a1ff570
MD5 85e522f272e464d69ee98843a77e71e2
BLAKE2b-256 9bf5d3c9b0ba802e2b8e363c5366b37b6b5fb703ac052a5afc334c36b255401f

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp312-cp312-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp312-cp312-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5b62fc7b16ed708b0c07d4393137797e92f63fc3bd5705607d97ba6a9a7cf3f0
MD5 57c00e73405172d61cb94741c74a5ac6
BLAKE2b-256 7ad04835f9f6d8ea26b633c6331aaff40d9ac52b26bd3e72d91d40f9c83ff5a1

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp312-cp312-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp312-cp312-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1796a8961decb522c47daab0fbe27c057d6d143ee22bb6ae0d5eb9b2a038c7b6
MD5 8b907248c70ed67b8530c652bb42fd83
BLAKE2b-256 590c2eaf389ebb377febaef128bce57e7ebdfb5375b959163dd936c06941fe59

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 953946cf610ffd57bb3fdd228effa2112fa51c5dfe36a96611effc9074a3d3be
MD5 544d805268e1a02301082ed846a01fa5
BLAKE2b-256 f763ca0921398395834db67c52e2a0d0a4edec8077875c8ef825cb1ef81b86f7

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3c08b42a0c296c8eeee6c533bcae5cfbc0ceae86a34f24fe6bbbb5faa7a7bea1
MD5 c352dfc3596fdcc90096bc1043b4c36c
BLAKE2b-256 b7ba6dde28d32906dba5e9a1b240c9b328f564ce3ac020c0f159cc13c2d47d9d

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp311-cp311-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp311-cp311-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7640aaffb2056e12f2906187b03a22228a0908c87d0295fddf4b0b92334a290b
MD5 1ae02dfcabcb8b5aa008f01fc24f3918
BLAKE2b-256 086b1fc20455bd0c095eb11240c74d074bfd96048276826c0b25972f7bcdb5fa

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp311-cp311-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp311-cp311-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 95a0968569f7f4455bfd242bfcd489ec47ad37d2ba0f3d9f738cd1128a5f775c
MD5 aee5d295f9902f27e6a88c1ad29a9602
BLAKE2b-256 ccf3a950329a25ee1af14c05065ce6c1751f031de9e6d5eebb0620ce3d0938ed

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 60af1531815d22659e5412ea401bed552a16c389938c49664e446e4cfd5ddc06
MD5 16fe175722600f9318a633ad00f581a1
BLAKE2b-256 bb284fddff9db2d0c5fb1c764a56d69ebe42858c388d1c2a1224cc5f3309def4

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 dec97872215c3122b7718ec47ac63e143565c3cced06444d0225e98bf4dd4b5f
MD5 a499134b2f3c85f5e37daa415397fc22
BLAKE2b-256 896cde1d69025456c14c4bc5e1a92967d3343ec95a7d3c9e211f8c01ea1eac5a

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp310-cp310-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp310-cp310-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 54431179d9a9ccf3feeae98aace07d89fae9fd728e2bc8656efbd70e7edcc6f8
MD5 0f414cf154e7d1c86efc069a024615e6
BLAKE2b-256 f7bc9c48e9abe9a8f76b9880f94b2262def4d4390d59ba91db44412fadd8b8a2

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp310-cp310-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp310-cp310-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 bfc234cef1d03092ea27440fb79e486722ccb41cff94ebaf9d5a1082436395fe
MD5 c8c9324feb351225e7c5dceceb5c4b35
BLAKE2b-256 06597b6911f0689b594c3bf7666ebc4079c6d6fba94533d4748f5844ec07cb09

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 661909751909340b24f637410dfec02a888867816c3db19ed4f4102ae105244a
MD5 9ee0bbf799d56c996526d2cdf895f11a
BLAKE2b-256 5522a19bdd21fb79bc45602883712ef0beb46f67f45e9bd7af1693519b68f89f

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f46e34ab3866ad8d8ace0673cd11e697c5cde6a3b7a4d8d789207d4d8badbb6e
MD5 e56fcf2cbe7f535f19e20cf77f439589
BLAKE2b-256 fdbb56df51845629d28e78beeab61cfab8a3ca97564b807553554a25dca1bad4

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp39-cp39-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp39-cp39-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36c7e7bc6b358cbf42b769c80206780fa1497d141a985c6b3e7768de44524e9a
MD5 d21585bb1bf104561d3db90efc65ae3b
BLAKE2b-256 69f32ac0f41d1e281faf996fc9b86ab5d558507e177f9e0c4d2bc9261107c250

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp39-cp39-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp39-cp39-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 98d8e03703f96b13a8d172d1ccdc7badb338227fd762985fdcea6b30f6697bdb
MD5 37ccbb908c01d2120f6ca20cabd7f1ce
BLAKE2b-256 25e27dfa8841d0d992726b8833d5ed8618ff4bb437423f0cf8916638b2186cf4

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3adce550850902b9aa6cd2378ccd720ac9ec8cf31e2eba9743ccc84ffcbe76d6
MD5 581ee42b8d912500bd0eaf35feb0877e
BLAKE2b-256 6f488748fe9155718a168c2f9357397e910ec5bd78620b6f7b9f986daf874485

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 40e9fa8fdc8d328ea4aa90be65fd34c5ef975610dbd707545e3664393a8a2497
MD5 013742255968fb7f4e610c51308e78ed
BLAKE2b-256 39451509f486784ae07367abe47e08d7c5f4c2f08340ae3ce98821a1bdab849e

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 74d19cf9ca3dad394afcabb7e6f7ed9ab9f59f2540d502826c7ec3e33985251d
MD5 bf71fb418765b93f2b25ba29f0266cb4
BLAKE2b-256 743061ce2912ddfbba0ed97cb291b7482cf9bd4592bd4dd7c5baa3c12502b081

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 375d8740c8035a50faca7a5afe2fbdb712aa8733715b971b2af61b4003fa1c41
MD5 fb51bf25dbfae5f79287a219503a0c74
BLAKE2b-256 f061bd076dce5ef499a60074aab53af4ecc05b656678156c151fd814102253e3

See more details on using hashes here.

File details

Details for the file torchaudio-2.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for torchaudio-2.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4ea0fd00142fe795c75bcc20a303981b56f2327c7f7d321b42a8fef1d78aafa9
MD5 d5d8c5b4742b08d6740cdd2c1b3ef3a4
BLAKE2b-256 26ca9b5c04754898d20ebdded3057465684236bc06697aeaa1a5df7dbcfaf0bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page