Skip to main content

Fast, efficient, and differentiable dynamic range compression/expansion/limiting for PyTorch.

Project description

TorchComp

Differentiable dynamic range controller in PyTorch.

Installation

pip install torchcomp

Compressor/Expander gain function

This function calculates the gain reduction $g[n]$ for a compressor/expander. It takes the RMS of the input signal $x[n]$ and the compressor/expander parameters as input. The function returns the gain $g[n]$ in linear scale. To use it as a regular compressor/expander, multiply the result $g[n]$ with the signal $x[n]$.

Function signature

def compexp_gain(
    x_rms: torch.Tensor,
    comp_thresh: Union[torch.Tensor, float],
    comp_ratio: Union[torch.Tensor, float],
    exp_thresh: Union[torch.Tensor, float],
    exp_ratio: Union[torch.Tensor, float],
    at: Union[torch.Tensor, float],
    rt: Union[torch.Tensor, float],
) -> torch.Tensor:
    """Compressor-Expander gain function.

    Args:
        x_rms (torch.Tensor): Input signal RMS.
        comp_thresh (torch.Tensor): Compressor threshold in dB.
        comp_ratio (torch.Tensor): Compressor ratio.
        exp_thresh (torch.Tensor): Expander threshold in dB.
        exp_ratio (torch.Tensor): Expander ratio.
        at (torch.Tensor): Attack time.
        rt (torch.Tensor): Release time.

    Shape:
        - x_rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - comp_thresh: :math:`(B,)` or a scalar.
        - comp_ratio: :math:`(B,)` or a scalar.
        - exp_thresh: :math:`(B,)` or a scalar.
        - exp_ratio: :math:`(B,)` or a scalar.
        - at: :math:`(B,)` or a scalar.
        - rt: :math:`(B,)` or a scalar.

    """

Note: x_rms should be non-negative. You can calculate it using $\sqrt{x^2[n]}$ and smooth it with avg.

Equations

$$ x_{\rm log}[n] = 20 \log_{10} x_{\rm rms}[n] $$

$$ g_{\rm log}[n] = \min\left(0, \left(1 - \frac{1}{CR}\right)\left(CT - x_{\rm log}[n]\right), \left(1 - \frac{1}{ER}\right)\left(ET - x_{\rm log}[n]\right)\right) $$

$$ g[n] = 10^{g_{\rm log}[n] / 20} $$

$$ \hat{g}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \ \alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

Block diagram

graph TB
    input((x))
    output((g))
    amp2db[amp2db]
    db2amp[db2amp]
    min[Min]
    delay[z^-1]
    zero( 0 )

    input --> amp2db --> neg["*(-1)"] --> plusCT["+CT"] & plusET["+ET"]
    plusCT --> multCS["*(1 - 1/CR)"]
    plusET --> multES["*(1 - 1/ER)"]
    zero & multCS & multES --> min --> db2amp

    db2amp & delay --> ifelse{<}
    output --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"]

    subgraph Compressor
        ifelse -->|yes| multAT["*AT"]
        subgraph Attack
            multAT & multATT --> plus1(("+"))
        end

        ifelse -->|no| multRT["*RT"]
        subgraph Release
            multRT & multRTT --> plus2(("+"))
        end
    end

    plus1 & plus2 --> output

Limiter gain function

This function calculates the gain reduction $g[n]$ for a limiter. To use it as a regular limiter, multiply the result $g[n]$ with the input signal $x[n]$.

Function signature

def limiter_gain(
    x: torch.Tensor,
    threshold: torch.Tensor,
    at: torch.Tensor,
    rt: torch.Tensor,
) -> torch.Tensor:
    """Limiter gain function.
    This implementation use the same attack and release time for level detection and gain smoothing.

    Args:
        x (torch.Tensor): Input signal.
        threshold (torch.Tensor): Limiter threshold in dB.
        at (torch.Tensor): Attack time.
        rt (torch.Tensor): Release time.

    Shape:
        - x: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - threshold: :math:`(B,)` or a scalar.
        - at: :math:`(B,)` or a scalar.
        - rt: :math:`(B,)` or a scalar.

    """

Equations

$$ x_{\rm peak}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} |x[n]| + (1 - \alpha_{\rm at}) x_{\rm peak}[n-1] & \text{if } |x[n]| > x_{\rm peak}[n-1] \ \alpha_{\rm rt} |x[n]| + (1 - \alpha_{\rm rt}) x_{\rm peak}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

$$ g[n] = \min(1, \frac{10^\frac{T}{20}}{x_{\rm peak}[n]}) $$

$$ \hat{g}[n] = \begin{rcases} \begin{dcases} \alpha_{\rm at} g[n] + (1 - \alpha_{\rm at}) \hat{g}[n-1] & \text{if } g[n] < \hat{g}[n-1] \ \alpha_{\rm rt} g[n] + (1 - \alpha_{\rm rt}) \hat{g}[n-1] & \text{otherwise} \end{dcases}\end{rcases} $$

Block diagram

graph TB
    input((x))
    output((g))
    peak((x_peak))
    abs[abs]
    delay[z^-1]
    zero( 0 )

    ifelse1{>}
    ifelse2{<}

    input --> abs --> ifelse1

    subgraph Peak detector
        ifelse1 -->|yes| multAT["*AT"]
        subgraph at1 [Attack]
            multAT & multATT --> plus1(("+"))
        end

        ifelse1 -->|no| multRT["*RT"]
        subgraph rt1 [Release]
            multRT & multRTT --> plus2(("+"))
        end
    end
    
    plus1 & plus2 --> peak
    peak --> delay --> multATT["*(1 - AT)"] & multRTT["*(1 - RT)"] & ifelse1

    peak --> amp2db[amp2db] --> neg["*(-1)"] --> plusT["+T"]
    zero & plusT --> min[Min] --> db2amp[db2amp] --> ifelse2{<}

    subgraph gain smoothing
        ifelse2 -->|yes| multAT2["*AT"]
        subgraph at2 [Attack]
            multAT2 & multATT2 --> plus3(("+"))
        end

        ifelse2 -->|no| multRT2["*RT"]
        subgraph rt2 [Release]
            multRT2 & multRTT2 --> plus4(("+"))
        end
    end

    output --> delay2[z^-1] --> multATT2["*(1 - AT)"] & multRTT2["*(1 - RT)"] & ifelse2

    plus3 & plus4 --> output

Average filter

Function signature

def avg(rms: torch.Tensor, avg_coef: Union[torch.Tensor, float]):
    """Compute the running average of a signal.

    Args:
        rms (torch.Tensor): Input signal.
        avg_coef (torch.Tensor): Coefficient for the average RMS.

    Shape:
        - rms: :math:`(B, T)` where :math:`B` is the batch size and :math:`T` is the number of samples.
        - avg_coef: :math:`(B,)` or a scalar.

    """

Equations

\hat{x}_{\rm rms}[n] = \alpha_{\rm avg} x_{\rm rms}[n] + (1 - \alpha_{\rm avg}) \hat{x}_{\rm rms}[n-1]

TODO

  • CUDA acceleration in Numba
  • PyTorch CPP extension
  • Native CUDA extension
  • Forward mode autograd
  • Examples

Citation

If you find this repository useful in your research, please cite our work with the following BibTex entry:

@inproceedings{ycy2024diffapf,
    title={Differentiable All-pole Filters for Time-varying Audio Systems},
    author={Chin-Yun Yu and Christopher Mitcheltree and Alistair Carson and Stefan Bilbao and Joshua D. Reiss and György Fazekas},
    booktitle={International Conference on Digital Audio Effects (DAFx)},
    year={2024},
    pages={345--352},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchcomp-0.2.tar.gz (9.0 kB view details)

Uploaded Source

Built Distribution

torchcomp-0.2-py3-none-any.whl (7.3 kB view details)

Uploaded Python 3

File details

Details for the file torchcomp-0.2.tar.gz.

File metadata

  • Download URL: torchcomp-0.2.tar.gz
  • Upload date:
  • Size: 9.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for torchcomp-0.2.tar.gz
Algorithm Hash digest
SHA256 5db330b6c2cbca639917723f0b3a7132f6edb5681614ef1769a4328535745eaf
MD5 5b4dc067c6321beda3d66949ce198868
BLAKE2b-256 1281c9941a599fc4bb9d754da9bfd49a865e17052735fe9e84571b540d8cd9de

See more details on using hashes here.

File details

Details for the file torchcomp-0.2-py3-none-any.whl.

File metadata

  • Download URL: torchcomp-0.2-py3-none-any.whl
  • Upload date:
  • Size: 7.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for torchcomp-0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 b7a9094bea68370a335ad38195a0bbf3c55639ed06eb8a5a16b7cd0c4e1224df
MD5 2aff947c8f02bc0a73642bac5a9725ac
BLAKE2b-256 3b4cf0e55a0a0bb0f896961cf9d18e57a4699cf2b76570a4cba21e009bccb4e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page