TorchConfig is a Python package that simplifies configuring PyTorch.
Project description
TorchConfig
TorchConfig is a Python package that simplifies configuring PyTorch.
Suppose that you want to test multiple optimizers to find which optimizer works best with your model. Here is one way you could achieve this:
if CONFIG["optimizer_name"] == "SGD":
optimizer = optim.SGD(
net.parameters(),
lr=CONFIG["optimizer_lr"],
momentum=CONFIG["optimizer_momentum"],
dampening=CONFIG["optimizer_dampening"],
weight_decay=CONFIG["optimizer_weight_decay"],
nesterov=CONFIG["optimizer_nesterov"],
)
...
elif CONFIG["optimizer_name"] == "Adam":
optimizer = optim.Adam(
net.parameters(),
lr=CONFIG["optimizer_lr"],
betas=CONFIG["optimizer_betas"],
eps=CONFIG["optimizer_eps"],
weight_decay=CONFIG["optimizer_weight_decay"],
amsgrad=CONFIG["optimizer_amsgrad"],
)
}
With TorchConfig, this is just one line!
optimizer = torchconfig.get_optimizer_from_dict(net.parameters(), CONFIG)
Installation
pip install torchconfig
How to Use
You can specify any optimizer
or lr_scheduler
by specifying its name through a dictionary key-value pair or an argument.
optimizer_config = {"name": "SGD", "lr": 0.1 }
optimizer = torchconfig.get_optimizer_from_args(net.parameters(), name="SGD", lr=0.1)
# or
optimizer = torchconfig.get_optimizer_from_args(net.parameters(), **optimizer_config)
# or
optimizer = torchconfig.get_optimizer_from_dict(net.parameters(), optimizer_config)
lr_scheduler_config = { "name": "CyclicLR", "base_lr": 0.01, "max_lr": 1 }
lr_scheduler = torchconfig.get_lr_scheduler_from_args(optimizer, **CONFIG["lr_scheduler"])
# or
lr_scheduler = torchconfig.get_lr_scheduler_from_args(optimizer, name="CyclicLR", base_lr=0.01, max_lr=1)
# or
lr_scheduler = torchconfig.get_lr_scheduler_from_dict(optimizer, CONFIG["lr_scheduler"])
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
torchconfig-0.1.3.tar.gz
(3.1 kB
view details)
Built Distribution
File details
Details for the file torchconfig-0.1.3.tar.gz
.
File metadata
- Download URL: torchconfig-0.1.3.tar.gz
- Upload date:
- Size: 3.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d2a9706a425e8bc6107545f6c4c723572eedce262454fdc3612e0ee9c6d33d66 |
|
MD5 | 5581521c866f4c0c5cca4611a576b475 |
|
BLAKE2b-256 | f995871685ec4d41a8307cc3b694116409febc8aef2d586571b8b47aa9dd7911 |
File details
Details for the file torchconfig-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: torchconfig-0.1.3-py3-none-any.whl
- Upload date:
- Size: 3.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/46.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 624173b4e5b3a0a2c8c15bb86d1eb102303664ac2cc7e82c7bc82de7eb70faee |
|
MD5 | 948e5df2b7b3ed3685e83a3a8b83d034 |
|
BLAKE2b-256 | 7987d5ff3fc8b1c768a80a62461b8a00b0920becdaa3d6c96f875593ded35c97 |