Skip to main content

Adversarial Defenses for PyTorch

Project description

Adversarial-Defenses-PyTorch (Under Reconstruction)

MIT License Pypi Latest Release

[Torchdefenses] is a PyTorch library that provides adversarial defenses to obtain robust model against adversarial attacks. It contains PyTorch Lightning-like interface and functions that make it easier for PyTorch users to implement adversarial defenses.

How to use?

import torchdefenses as td
rmodel = td.RobModel(model, n_classes=10, 
                     normalize={'mean':[0.4914, 0.4822, 0.4465], 'std':[0.2023, 0.1994, 0.2010]})
Easy training

import torchdefenses.trainer as tr
trainer = tr.Standard(rmodel)
trainer.record_rob(train_loader, val_loader, eps=0.3, alpha=0.1, steps=5, std=0.1)
trainer.fit(train_loader=train_loader, max_epoch=10, optimizer="SGD(lr=0.01)",
            scheduler="Step([100, 105], 0.1)", scheduler_type="Epoch",
            record_type="Epoch", save_type="Epoch",
            save_path="./_temp/"+"sample", save_overwrite=True)

Supporting Multi-GPU

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" # Possible GPUS

model = td.utils.load_model(model_name="ResNet18", n_classes=10).cuda() # Load model
model = torch.nn.DataParallel(model) # Parallelize

rmodel = td.RobModel(model, n_classes=10, 
                  normalize={'mean':[0.4914, 0.4822, 0.4465], 'std':[0.2023, 0.1994, 0.2010]}) # Wrap it with RobModel
trainer = ... # Define trainer
trainer.fit(..) # Training start

Recording, Saving and Visualizing

trainer.save_all("./_temp/"+"sample", overwrite=True)
trainer.rm.plot(title="A", xlabel="Epoch", ylabel="Accuracy",
                figsize=(6, 4),
                x_key='Epoch',
                y_keys=['Clean(Tr)', 'FGSM(Tr)', 'PGD(Tr)', 'GN(Tr)',
                        'Clean(Val)', 'FGSM(Val)', 'PGD(Val)', 'GN(Val)'],
                ylim=(-10, 110),
                colors=['k', '#D81B60', '#1E88E5', '#004D40']*2,
                labels=['Clean', 'FGSM', 'PGD', 'GN', '', '', '', ''],
                linestyles=['-', '-', '-', '-', '--', '--', '--', '--'],
               )

Easy evaluation

rmodel.eval_accuracy(test_loader)
rmodel.eval_rob_accuracy_pgd(test_loader, eps=1, alpha=0.1,
                             steps=10, random_start=True, restart_num=1)

Useful functions

from torchdefenses.utils import fix_randomness, fix_gpu
fix_randomness(0)
fix_gpu(0)

How to customize?

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

torchdefenses-0.1.25-py3-none-any.whl (41.7 kB view details)

Uploaded Python 3

File details

Details for the file torchdefenses-0.1.25-py3-none-any.whl.

File metadata

  • Download URL: torchdefenses-0.1.25-py3-none-any.whl
  • Upload date:
  • Size: 41.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8

File hashes

Hashes for torchdefenses-0.1.25-py3-none-any.whl
Algorithm Hash digest
SHA256 17a82d37d4aa404711ffae172c39fd703e24f8d62c4bce64219d3b8ab7a4947c
MD5 7e06947f3769115cb8d6807496f78c1f
BLAKE2b-256 92a3f9cc6c3aac2f45333ca6d2fd48f3309985256f929bb194a24708a51042de

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page