Adversarial Defenses for PyTorch
Project description
Adversarial-Defenses-PyTorch (Under Reconstruction)
[Torchdefenses] is a PyTorch library that provides adversarial defenses to obtain robust model against adversarial attacks. It contains PyTorch Lightning-like interface and functions that make it easier for PyTorch users to implement adversarial defenses.
How to use?
import torchdefenses as td
rmodel = td.RobModel(model, n_classes=10,
normalize={'mean':[0.4914, 0.4822, 0.4465], 'std':[0.2023, 0.1994, 0.2010]})
Easy training
import torchdefenses.trainer as tr
trainer = tr.Standard(rmodel)
trainer.record_rob(train_loader, val_loader, eps=0.3, alpha=0.1, steps=5, std=0.1)
trainer.fit(train_loader=train_loader, max_epoch=10, optimizer="SGD(lr=0.01)",
scheduler="Step([100, 105], 0.1)", scheduler_type="Epoch",
record_type="Epoch", save_type="Epoch",
save_path="./_temp/"+"sample", save_overwrite=True)
Supporting Multi-GPU
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" # Possible GPUS
model = td.utils.load_model(model_name="ResNet18", n_classes=10).cuda() # Load model
model = torch.nn.DataParallel(model) # Parallelize
rmodel = td.RobModel(model, n_classes=10,
normalize={'mean':[0.4914, 0.4822, 0.4465], 'std':[0.2023, 0.1994, 0.2010]}) # Wrap it with RobModel
trainer = ... # Define trainer
trainer.fit(..) # Training start
Recording, Saving and Visualizing
trainer.save_all("./_temp/"+"sample", overwrite=True)
trainer.rm.plot(title="A", xlabel="Epoch", ylabel="Accuracy",
figsize=(6, 4),
x_key='Epoch',
y_keys=['Clean(Tr)', 'FGSM(Tr)', 'PGD(Tr)', 'GN(Tr)',
'Clean(Val)', 'FGSM(Val)', 'PGD(Val)', 'GN(Val)'],
ylim=(-10, 110),
colors=['k', '#D81B60', '#1E88E5', '#004D40']*2,
labels=['Clean', 'FGSM', 'PGD', 'GN', '', '', '', ''],
linestyles=['-', '-', '-', '-', '--', '--', '--', '--'],
)
Easy evaluation
rmodel.eval_accuracy(test_loader)
rmodel.eval_rob_accuracy_pgd(test_loader, eps=1, alpha=0.1,
steps=10, random_start=True, restart_num=1)
Useful functions
from torchdefenses.utils import fix_randomness, fix_gpu
fix_randomness(0)
fix_gpu(0)
How to customize?
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
File details
Details for the file torchdefenses-0.1.25-py3-none-any.whl
.
File metadata
- Download URL: torchdefenses-0.1.25-py3-none-any.whl
- Upload date:
- Size: 41.7 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.8.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17a82d37d4aa404711ffae172c39fd703e24f8d62c4bce64219d3b8ab7a4947c |
|
MD5 | 7e06947f3769115cb8d6807496f78c1f |
|
BLAKE2b-256 | 92a3f9cc6c3aac2f45333ca6d2fd48f3309985256f929bb194a24708a51042de |